Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 252, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589797

ABSTRACT

BACKGROUND: This study explores the impact of various light spectra on the photosynthetic performance of strawberry plants subjected to salinity, alkalinity, and combined salinity/alkalinity stress. We employed supplemental lighting through Light-emitting Diodes (LEDs) with specific wavelengths: monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3 ratio), and white/yellow (400-700 nm), all at an intensity of 200 µmol m-2 S-1. Additionally, a control group (ambient light) without LED treatment was included in the study. The tested experimental variants were: optimal growth conditions (control), alkalinity (40 mM NaHCO3), salinity (80 mM NaCl), and a combination of salinity/alkalinity. RESULTS: The results revealed a notable decrease in photosynthetic efficiency under both salinity and alkalinity stresses, especially when these stresses were combined, in comparison to the no-stress condition. However, the application of supplemental lighting, particularly with the red and blue/red spectra, mitigated the adverse effects of stress. The imposed stress conditions had a detrimental impact on both gas exchange parameters and photosynthetic efficiency of the plants. In contrast, treatments involving blue, red, and blue/red light exhibited a beneficial effect on photosynthetic efficiency compared to other lighting conditions. Further analysis of JIP-test parameters confirmed that these specific light treatments significantly ameliorated the stress impacts. CONCLUSIONS: In summary, the utilization of blue, red, and blue/red light spectra has the potential to enhance plant resilience in the face of salinity and alkalinity stresses. This discovery presents a promising strategy for cultivating plants in anticipation of future challenging environmental conditions.


Subject(s)
Fragaria , Resilience, Psychological , Lighting/methods , Salinity , Light
2.
Sci Rep ; 12(1): 13257, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918416

ABSTRACT

Considering the destructive effect of stresses on the photosynthetic apparatus of plants and the important role of light in photosynthesis, we investigated the effect of complementary light on the photosynthetic apparatus under salinity and alkalinity stress conditions. Light-emitting diodes (LEDs) in monochromatic blue (460 nm), monochromatic red (660 nm), dichromatic blue/red (1:3), white/yellow (400-700 nm) at 200 µmol m-2 S-1, and without LED treatment were used. The stress treatments were in three stages: Control (no stress), Alkalinity (40 mM NaHCO3), and Salinity (80 mM NaCl). Our results showed that salinity and alkaline stress reduced CO2 assimilation by 62.64% and 40.81%, respectively, compared to the control treatment. The blue light spectrum had the highest increase in water use efficiency (54%) compared to the treatment without supplementary light. Under salinity and alkalinity stress, L, K, and H bands increased and G bands decreased compared to the control treatment, with blue/red light causing the highest increase in L and K bands under both stress conditions. In salinity and alkalinity stress, white/yellow and blue/red spectra caused the highest increase in H bands. Complementary light spectra increased the G band compared to the treatment without complementary light. There was a significant decrease in power indices and quantum power parameters due to salt and alkalinity stress. The use of light spectra, especially blue, red, and blue/red light, increased these parameters compared with treatment without complementary light. Different light spectra have different effects on the photosynthetic apparatus of plants. It can be concluded that using red, blue spectra and their combination can increase the resistance of plants to stress conditions and be adopted as a strategy in planting plants under stress conditions.


Subject(s)
Fragaria , Photosynthesis , Plant Leaves , Salinity , Sodium Chloride , Water
3.
Sci Rep ; 12(1): 9272, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35661116

ABSTRACT

The use of complementary light spectra is a potential new approach to studying the increase in plant resilience under stress conditions. The purpose of this experiment was to investigate the effect of different spectra of complementary light on the growth and development of strawberry plants under salinity and alkalinity stress conditions. Plants were grown in the greenhouse under ambient light and irradiated with blue (460 nm), red (660 nm), blue/red (1:3), and white/yellow (400-700 nm) light during the developmental stages. The stress treatments were as follows: control (non-stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Our results showed that salinity and alkalinity stress decreased fresh and dry weights and the number of green leaves, and increased chlorotic, tip burn, and dry leaves. The blue and red spectra had a greater effect on reducing the effects of stress compared to other spectra. Stress conditions decreased SPAD and RWC, although blue light increased SPAD, and blue/red light increased RWC under stress conditions. Blue/red and white/yellow light had the greatest effect on reproductive traits. Stress conditions affected fruit color indicators, and red and blue light had the most significant effect on these traits. Under stress conditions, sodium uptake increased, while K, Ca, Mg, and Fe uptake decreased, markedly. Blue and red light and their combination alleviated this reducing effect of stress. It can be concluded that the effects of salinity and alkalinity stresses can be reduced by manipulating the supplemental light spectrum. The use of artificial light can be extended to stresses.


Subject(s)
Fragaria , Growth and Development , Light , Plant Leaves , Salinity
4.
PLoS One ; 16(12): e0261585, 2021.
Article in English | MEDLINE | ID: mdl-34941932

ABSTRACT

Strawberry is one of the plants sensitive to salt and alkalinity stress. Light quality affects plant growth and metabolic activities. However, there is no clear answer in the literature on how light can improve the performance of the photosynthetic apparatus of this species under salt and alkalinity stress. The aim of this work was to investigate the effects of different spectra of supplemental light on strawberry (cv. Camarosa) under salt and alkalinity stress conditions. Light spectra of blue (with peak 460 nm), red (with peak 660 nm), blue/red (1:3), white/yellow (1:1) (400-700 nm) and ambient light were used as control. There were three stress treatments: control (no stress), alkalinity (40 mM NaHCO3), and salinity (80 mM NaCl). Under stress conditions, red and red/blue light had a positive effect on CO2 assimilation. In addition, blue/red light increased intrinsic water use efficiency (WUEi) under both stress conditions. Salinity and alkalinity stress decreased OJIP curves compared to the control treatment. Blue light caused an increase in its in plants under salinity stress, and red and blue/red light caused an increase in its in plants under alkalinity. Both salt and alkalinity stress caused a significant reduction in photosystem II (PSII) performance indices and quantum yield parameters. Adjustment of light spectra, especially red light, increased these parameters. It can be concluded that the adverse effects of salt and alkalinity stress on photosynthesis can be partially alleviated by changing the light spectra.


Subject(s)
Fragaria/physiology , Fragaria/growth & development , Fragaria/radiation effects , Light , Photosynthesis , Salinity , Salt Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...