Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 242(Pt 1): 124721, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37150380

ABSTRACT

This study presented for the first time the PHA-lipid interactions by circular dichroism (CD) spectroscopy, besides a sustainable PHA production strategy using a cost-effective microbial isolate. About 48 bacterial isolates were selected from multifarious Egyptian sites and screened for PHAs production. The Fe(AZU-A6) was the most potent isolate, and identified genetically as Priestia filamentosa AZU-A6, while the intracellular PHA granules were visualized by TEM. Sugarcane molasses (SCM) was used an inexpensive carbon source and the production conditions were optimized through a Factor-By-Factor strategy and a Plackett-Burman statistical model. The highest production (6.84 g L-1) was achieved at 8.0 % SCM, pH 8.0, 35 °C, 250 rpm, and 0.5 g L-1 ammonium chloride after 72 h. The complementary physicochemical techniques (e.g., FTIR, NMR, GC-MS, DSC, and TGA) have ascertained the structural identity as poly-3-hydroxybutyrate (P3HB) with a characteristic melting temperature of 174.5 °C. The circular dichroism analysis investigated the existence of interactions between the PHB and the different lipids, particularly 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The ATR technique for the lipid-PHB films suggested that both the hydrophobic and electrostatic forces control the lipid-PHB interactions that might induce changes in the structuration of PHB.


Subject(s)
Polyhydroxyalkanoates , Saccharum , Molasses , Polyesters
2.
Int J Biol Macromol ; 190: 319-332, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34411615

ABSTRACT

The demand for the production of biodegradable plastics has significantly increased. Bioplastics have become an essential alternative to the threats of the daily consumable plastics, sourced from fossil fuels, to the environment. Polyhydroxyalkonates (PHAs) are a ubiquitous group of bioderived and biodegradable plastics, however their production is limited by the costs associated mainly with the carbon sources. Herein, this study aims to reduce the PHAs production cost by using a by-product from the dairy industry, i.e., cheese whey (CW), as a sole carbon source. The developed process recruits an aquatic isolate, Bacillus flexus Azu-A2, and is optimized via studying various parameters using the shaking flasks technique. The results showed that the maximum PHA production (0.95 g L-1) and PHA content (20.96%, w/w), were obtained after incubation period 72 h at 45 °C, 100 rpm agitation rate, 50% CWS concentration, pH 8.5, and 1.0 g L-1 ammonium chloride. Physiochemically, Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR), and energy-dispersive X-ray (EDX) techniques, emphasized the type of the extracted PHA as polyhydroxybutyrate (PHB). The thermal properties of PHB were measured using differential scanning calorimetry (DSC), recording melting transition temperature (Tm) at 170.96 °C. Furthermore, a scanning electron microscope (SEM) visualized a homogenous microporous structure for the thin PHB biofilm. In essence, this study highlights the ability of Bacillus flexus Azu-A2 to produce a good yield of highly purified PHB at reduced production cost from dairy CW. Consequently, the current study paves the way for an improved whey management strategy.


Subject(s)
Bacillus/chemistry , Cheese/analysis , Hydroxybutyrates/chemistry , Plastics/chemistry , Polyesters/chemistry , Whey/chemistry , Ammonium Chloride/chemistry , Calorimetry, Differential Scanning , Carbon-13 Magnetic Resonance Spectroscopy , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Nitrogen/chemistry , Proton Magnetic Resonance Spectroscopy , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL