Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(9): 2337-2349, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694460

ABSTRACT

The ongoing work delineates the design of a novel library of 1,2,3-triazole-attached phenylacetamides through molecular hybridization of propargyl and phenylacetamide derivatives. Copper-supported modified magnetic carrageenan serves as a green heterogeneous catalyst, ensuring high yield, efficient reaction times, high atom economy, utilization of an environmentally friendly catalyst from a natural source, and a straightforward workup procedure. The successful synthesis of the catalyst is confirmed and evaluated using various analytical techniques, while the synthetic compounds are characterized through 1H NMR and 13C NMR.

2.
BMC Chem ; 17(1): 160, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986120

ABSTRACT

In this study, an environmentally friendly, solvent- and catalyst-free synthesis of 2-anilino nicotinic acids derivatives is reported. This operationally simple and green procedure was applied to a selection of primary aromatic amines giving rise to 23 derivatives of 2-anilino nicotinic acids in a very short reaction time (15-120 min) with good to excellent yield. Next, similarity searches were executed on these derivatives to find the possible biological target. These products were screened for inhibition of COX-1 and COX-2 by molecular docking and dynamic studies. In silico studies revealed that among these derivatives, the structure 10 bearing meta-chlorine substitutions could act as COX-1 and COX-2 inhibitors. These results can be used in designing important lead compounds for further development as potential anti-inflammatory drugs.

3.
Int J Biol Macromol ; 253(Pt 6): 127432, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838123

ABSTRACT

Dye and textile industries are one of the main causes of water pollution and put the environment and health of society at risk. Developing new materials to decontaminate industrial waste effluents containing dyes as pollutants is challenging due to numerous issues, including tailoring recyclable and biodegradable agents. This study focuses on applying an advanced oxidation process, electro-Fenton for the treatment of dye-containing wastewater using agar-functionalized graphene oxide-immobilized copper ferrite aerogel. The objective is therefore to determine the optimal conditions for the degradation of model pollutants methylene blue (MB). MB was oxidized and degraded through the dark-Fenton process using Agar@GO-CuFe2O4 as a new biobased catalyst. The effect of the operating parameters was then evaluated to determine the optimal conditions. The degradation process was screened for different initial concentrations of dye solution between 10 and 150 mg/l, a volume range of H2O2 between 0.5 and 2.5 ml, and different pH from 2 to 7. The results show that 99.89 % of the MB with the initial concentration of 150 ppm was degraded by 20 mg of the catalyst and 2 ml of H2O2 (30 % W/W) at 40 °C and pH = 6. Pseudo-second-order kinetics satisfactorily describes the experimental data. SYNOPSIS: The prepared catalyst can be applied to oxidize industrial effluents before they are released into the environment.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Agar , Copper , Iron , Hydrogen Peroxide , Oxidative Stress
4.
Sci Rep ; 13(1): 8675, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248371

ABSTRACT

A novel magnetic heterogeneous catalyst was synthesized through the immobilization of copper ions onto the l-arginine functionalized CuFe2O4@SiO2. The prepared catalyst was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM), and Energy Dispersive X-Ray spectroscopy (EDX). The resulting catalyst was used in the ultrasonic-assisted synthesis of 1,2,3-triazoles via a one-pot three-component reaction of alkynes, alkyl halides, and sodium azides under green conditions within a short time. The catalyst reusability was investigated after five cycles and no significant loss of activity was observed.

5.
Sci Rep ; 13(1): 1272, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36690716

ABSTRACT

In this paper, a novel catalyst is introduced based on the immobilization of palladium onto magnetic Fucus Vesiculosus extract (Pd@mFuVe catalyst). For the synthesis of Pd@mFuVe catalyst, Fucus Vesiculosus extract is obtained from the plant source, followed by the synthesis of superparamagnetic iron oxide nanoparticles (SPION) onto the extract. The catalyst is characterized by several methods, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), FT-IR spectroscopy, vibrating sample magnetometer (VSM), powder X-ray diffraction analysis (XRD), and inductively coupled plasma (ICP). The activity of Pd@mFuVe catalyst is studied in the synthesis of N-alkyl-2-(4-methyl-1-oxoisoquinolin-2(1H)-yl)-2-phenylacetamides. The products were synthesized in three steps, the synthesis of 2-iodobenzoic acid from 2-aminobenzoic acid, which participated in a multicomponent reaction with allylamine, aldehydes, and isocyanides, followed by a cyclization reaction, catalyzed by Pd@mFuVe catalyst. The product yields are high and the catalyst showed good reusability after 5 sequential runs. The most significant, Pd@mFuVe catalyst is fabricated from a plant extract source as a green support for the catalyst.


Subject(s)
Fucus , Palladium , Palladium/chemistry , Spectroscopy, Fourier Transform Infrared , Catalysis , Plant Extracts/chemistry , Magnetic Phenomena
6.
Sci Rep ; 12(1): 6104, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414646

ABSTRACT

In this work, a novel magnetic organic-inorganic hybrid catalyst was fabricated by encapsulating magnetite@silica (Fe3O4@SiO2) nanoparticles with Isinglass protein collagen (IGPC) using epichlorohydrin (ECH) as a crosslinking agent. Characterization studies of the prepared particles were accomplished by various analytical techniques specifically, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analysis. The XRD results showed a crystalline and amorphous phase which contribute to magnetite and isinglass respectively. Moreover, the formation of the core/shell structure had been confirmed by TEM images. The synthesized Fe3O4@SiO2/ECH/IG was applied as a bifunctional heterogeneous catalyst in the synthesis of spirooxindole derivatives through the multicomponent reaction of isatin, malononitrile, and C-H acids which demonstrated its excellent catalytic properties. The advantages of this green approach were low catalyst loading, short reaction time, stability, and recyclability for at least four runs.


Subject(s)
Magnetite Nanoparticles , Silicon Dioxide , Catalysis , Collagen , Ferrosoferric Oxide/chemistry , Magnetic Iron Oxide Nanoparticles , Magnetite Nanoparticles/chemistry , Silicon Dioxide/chemistry
7.
Sci Rep ; 11(1): 18553, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535724

ABSTRACT

MOFs compounds with open metal sites, particularly Cu-BTC, have great potential for adsorption and catalysis applications. However, the powdery morphology limits their applications. One of the almost new ways to overcome this problem is to trap them in a standing and flexible aerogel matrix to form a hierarchical porous composite. In this work, Cu-BTC/CNC (crystalline nanocellulose) and Cu-BTC/NFC (nanofibrillated cellulose) aerogel composites were synthesized using a direct mixing method by the addition of Cu-BTC powder to the liquid precursor solution followed by gelation and freeze-drying. Also, pure nanocellulose aerogels (CNC and NFC aerogels) have been synthesized from cellulose isolated from peanut shells. Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra, and X-ray diffraction (XRD) were utilized to evaluate the structure and morphology of the prepared materials. The adsorption ability of pure CNC aerogel and Cu-BTC/NFC aerogel composite for organic dye (Congo Red) and heavy metal ion (Mn7+) was studied and determined by the UV-Vis spectrophotometry and inductively-coupled plasma optical emission spectrometry (ICP-OES), respectively. It was concluded that Cu-BTC/NFC aerogel composite shows excellent adsorption capacity for Congo Red. The adsorption process of this composite is better described by the pseudo-second-order kinetic model and Langmuir isotherm, with a maximum monolayer adsorption capacity of 39 mg/g for Congo Red. Nevertheless, CNC aerogel shows no adsorption for Congo Red. Both CNC aerogel and Cu-BTC/NFC aerogel composite act as a monolith standing solid reducer, which means they could remove permanganate ions from water by reducing it into manganese dioxide without releasing any secondary product in the solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...