Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921956

ABSTRACT

BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a 'just-right' level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a 'just-right' ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.


Subject(s)
Cecal Neoplasms , Focal Adhesion Kinase 1 , Proto-Oncogene Proteins B-raf , Animals , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Phosphorylation , Mice , Humans , Cecal Neoplasms/metabolism , Cecal Neoplasms/genetics , Cecal Neoplasms/pathology , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , MAP Kinase Signaling System , ErbB Receptors/metabolism , ErbB Receptors/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male
2.
Nat Commun ; 15(1): 3740, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702347

ABSTRACT

Insufficient functional ß-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing ß-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore ß-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.


Subject(s)
Acinar Cells , Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Animals , Insulin-Secreting Cells/metabolism , Mice , Acinar Cells/metabolism , Male , Insulin/metabolism , Cell Transdifferentiation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Mice, Inbred C57BL , Protein Kinase Inhibitors/pharmacology , Islets of Langerhans/metabolism
3.
Stem Cells ; 42(4): 385-401, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38206366

ABSTRACT

Pancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.1% of the total pancreatic cells, and can be sorted using a fluorescence-activated cell sorter with the CD133highCD71lowFSCmid-high phenotype. They exhibit properties in self-renewal and tri-lineage differentiation (including endocrine-like cells) in a unique 3-dimensional colony assay system. An in vitro lineage tracing experiment, using a novel HprtDsRed/+ mouse model, demonstrates that a single cell from a cluster clonally gives rise to a colony. Droplet RNAseq analysis demonstrates that these ductal clusters express embryonic multipotent progenitor cell markers Sox9, Pdx1, and Nkx6-1, and genes involved in actin cytoskeleton regulation, inflammation responses, organ development, and cancer. Surprisingly, these ductal clusters resist prolonged trypsin digestion in vitro, preferentially survive in vivo after a severe acinar cell injury and become proliferative within 14 days post-injury. Thus, the ductal clusters are the fundamental units of progenitor-like cells in the adult murine pancreas with implications in diabetes treatment and tumorigenicity.


Subject(s)
Acinar Cells , Pancreatic Ducts , Mice , Animals , Pancreas , Stem Cells , Cell Differentiation
4.
Biochem Biophys Rep ; 37: 101634, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38188365

ABSTRACT

BRAF mutation is a driver mutation in colorectal cancer (CRC), and BRAFV600E mutation is found in 10-15 % of all CRCs. BRAF mutant CRCs in patients are primarily localized in the right colon, including the cecum. However, in the Vill-Cre;BRAFV600E/+ mice, adenomas mainly developed in the small intestines of the mice, and no tumor formed in the cecum. The mice model of BRAFV600E-mutant CRC with tumors in the cecum is lacking. Dextran Sulfate Sodium (DSS) treatment induces colitis in mice. Acute DSS treatment does not lead to tumor formation. We show that DSS treatment and BRAFV600E mutation synergistically induced cecal tumorigenesis, and cecal tumors formed within three months after five-day DSS treatment. The location of the adenomas supports the patient relevance of the model. Our BRAFV600E/DSS model provides a valuable in vivo model for future identification and validation of novel therapeutic approaches for treating BRAF-mutant CRC. Our results are consistent with the notion that BRAFV600E mutation is an oncogenic event that can shift controlled regeneration to unrestrained oncogenesis.

5.
Res Sq ; 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-36778401

ABSTRACT

BRAF V600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a "just-right" level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vill-Cre;BRAFV600E/+;Fakfl/fl mice, Fak deletion maximized BRAFV600E's oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a "just-right" ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.

6.
Sci Rep ; 13(1): 9113, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277426

ABSTRACT

Chronic pancreatitis is a debilitating disease affecting millions worldwide. These patients suffer from bouts of severe pain that are minimally relieved by pain medications and may necessitate major surgeries with high morbidity and mortality. Previously, we demonstrated that "chemical pancreatectomy," a pancreatic intraductal infusion of dilute acetic acid solution, ablated the exocrine pancreas while preserving the endocrine pancreas. Notably, chemical pancreatectomy resolved chronic inflammation, alleviated allodynia in the cerulein pancreatitis model, and improved glucose homeostasis. Herein, we extensively tested the feasibility of a chemical pancreatectomy in NHPs and validated our previously published pilot study. We did serial computed tomography (CT) scans of the abdomen and pelvis, analyzed dorsal root ganglia, measured serum enzymes, and performed histological and ultrastructural assessments and pancreatic endocrine function assays. Based on serial CT scans, chemical pancreatectomy led to the loss of pancreatic volume. Immunohistochemistry and transmission electron microscopy demonstrated exocrine pancreatic ablation with endocrine islet preservation. Importantly, chemical pancreatectomy did not increase pro-nociceptive markers in harvested dorsal root ganglia. Also, chemical pancreatectomy improved insulin secretion to supranormal levels in vivo and in vitro. Thus, this study may provide a foundation for translating this procedure to patients with chronic pancreatitis or other conditions requiring a pancreatectomy.


Subject(s)
Pancreatectomy , Pancreatitis, Chronic , Animals , Pancreatectomy/methods , Pilot Projects , Pancreatitis, Chronic/surgery , Primates , Pain , Chronic Disease
7.
Res Sq ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945494

ABSTRACT

Chronic pancreatitis is a debilitating disease affecting millions worldwide. These patients suffer from bouts of severe pain that are minimally relieved by pain medications and may necessitate major surgeries with high morbidity and mortality. Previously, we demonstrated that "chemical pancreatectomy," a pancreatic intraductal infusion of dilute acetic acid solution, ablated the exocrine pancreas while preserving the endocrine pancreas. Notably, chemical pancreatectomy resolved chronic inflammation, alleviated allodynia in the cerulein pancreatitis model, and improved glucose homeostasis. Herein, we extensively tested the feasibility of a chemical pancreatectomy in NHPs and validated our previously published pilot study. We did serial computed tomography (CT) scans of the abdomen and pelvis, analyzed dorsal root ganglia, measured serum enzymes, and performed histological and ultrastructural assessments and pancreatic endocrine function assays.  Based on serial CT scans, chemical pancreatectomy led to the loss of pancreatic volume. Immunohistochemistry and transmission electron microscopy demonstrated exocrine pancreatic ablation with endocrine islet preservation. Importantly, chemical pancreatectomy did not increase pro-nociceptive markers in harvested dorsal root ganglia. Also, chemical pancreatectomy improved insulin secretion to supranormal levels in vivo and in vitro. Thus, this study may provide a foundation for translating this procedure to patients with chronic pancreatitis or other conditions requiring a pancreatectomy.

8.
Development ; 149(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-36017799

ABSTRACT

Signals from the endothelium play a pivotal role in pancreatic lineage commitment. As such, the fate of the epithelial cells relies heavily on the spatiotemporal recruitment of the endothelial cells to the embryonic pancreas. Although it is known that VEGFA secreted by the epithelium recruits the endothelial cells to the specific domains within the developing pancreas, the mechanism that controls the timing of such recruitment is poorly understood. Here, we have assessed the role of focal adhesion kinase (FAK) in mouse pancreatic development based on our observation that the presence of the enzymatically active form of FAK (pFAK) in the epithelial cells is inversely correlated with vessel recruitment. To study the role of FAK in the pancreas, we conditionally deleted the gene encoding focal adhesion kinase in the developing mouse pancreas. We found that homozygous deletion of Fak (Ptk2) during embryogenesis resulted in ectopic epithelial expression of VEGFA, abnormal endothelial recruitment and a delay in endocrine and acinar cell differentiation. The heterozygous mutants were born with no pancreatic phenotype but displayed gradual acinar atrophy due to cell polarity defects in exocrine cells. Together, our findings imply a role for FAK in controlling the timing of pancreatic lineage commitment and/or differentiation in the embryonic pancreas by preventing endothelial recruitment to the embryonic pancreatic epithelium.


Subject(s)
Endothelial Cells , Animals , Cell Differentiation/genetics , Focal Adhesion Protein-Tyrosine Kinases , Homozygote , Mice , Sequence Deletion
9.
Gut ; 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330784

ABSTRACT

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

10.
Diabetes ; 70(7): 1508-1518, 2021 07.
Article in English | MEDLINE | ID: mdl-33906911

ABSTRACT

In contrast to the skin and the gut, where somatic stem cells and their niche are well characterized, a definitive pancreatic multipotent cell population in the adult pancreas has yet to be revealed. Of particular interest is whether such cells may be endogenous in patients with diabetes, and if so, can they be used for therapeutic purposes? In the current study, we used two separate reporter lines to target Cre-recombinase expression to the Lgr5- or glucagon-expressing cells in the pancreas. We provide evidence for the existence of a population of cells within and in the proximity of the ducts that transiently express the stem-cell marker Lgr5 during late gestational stages. Careful timing of tamoxifen treatment in Lgr5EGFP-IRES-CreERT2 ;R26 Tomato mice allowed us to show that these Lgr5-expressing progenitor cells can differentiate into α-cells during pregnancy. Furthermore, we report on a spontaneous lineage conversion of α- to ß-cells specifically after parturition. The contribution of Lgr5 progeny to the ß-cell compartment through an α-cell intermediate phase early after pregnancy appears to be part of a novel mechanism that would counterbalance against excessive ß-cell mass reduction during ß-cell involution.


Subject(s)
Cell Lineage , Glucagon-Secreting Cells/cytology , Insulin-Secreting Cells/cytology , Pancreas/cytology , Postpartum Period/metabolism , Receptors, G-Protein-Coupled/physiology , Stem Cells/cytology , Animals , Apoptosis , Cell Differentiation , Female , Mice , Mice, Inbred C57BL
11.
Immun Inflamm Dis ; 8(4): 807-824, 2020 12.
Article in English | MEDLINE | ID: mdl-32885589

ABSTRACT

INTRODUCTION: Mounting evidence suggest that macrophages play crucial roles in disease and tissue regeneration. However, despite much efforts during the past decade, our knowledge about the extent of macrophages' contribution to adult pancreatic regeneration after injury or during pancreatic disease progression is still limited. Nevertheless, it is generally accepted that some macrophage features that normally would contribute to healing and regeneration may be detrimental in pancreatic cancer. Altogether, the current literature contains conflicting reports on whether macrophages act as friends or foe in these conditions. METHODS AND RESULTS: In this review, we briefly review the origins of tissue resident and infiltrating macrophages and the importance of cellular crosstalking between macrophages and other resident cells in tissue regeneration. The primary objective of this review is to summarize our knowledge of the distinct roles of tissue resident and infiltrating macrophages, the impact of M1 and M2 macrophage phenotypes, and emerging evidence on macrophage crosstalking in pancreatic injury, regeneration, and disease. CONCLUSION: Macrophages are involved with various stages of pancreatic cancer development, pancreatitis, and diabetes. Elucidating their role in these conditions will aid the development of targeted therapeutic treatments.


Subject(s)
Macrophages , Humans , Leukocyte Count , Pancreas , Pancreatitis , Phenotype
12.
Cancer Res ; 79(20): 5316-5327, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31395607

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is associated with significant fibrosis. Recent findings have highlighted the profibrotic activity of tissue-resident macrophages in the pancreatic cancer microenvironment. Here, we show that neoplastic pancreatic epithelium, as well as a subset of tissue-resident macrophages, expresses the prolactin-receptor (PRLR). High mobility group box 1-induced prolactin expression in the pancreas maintained FAK1 and STAT3 phosphorylation within the epithelium and stroma. Gain-of-function and loss-of-function experiments demonstrated the essential role of prolactin in promoting collagen deposition and fibrosis. Finally, the signaling cascade downstream of prolactin/PRLR activated STAT3 rather than STAT5 in PDAC. These findings suggest that targeting prolactin together with IL6, a known major activator of STAT3, could represent a novel therapeutic strategy for treating pancreatic cancer. SIGNIFICANCE: Prolactin is a key factor in the cross-talk between the stroma and neoplastic epithelium, functioning to promote fibrosis and PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Neoplasms, Hormone-Dependent/pathology , Pancreatic Neoplasms/pathology , Prolactin/pharmacology , Animals , Carcinoma, Pancreatic Ductal/physiopathology , Cell Line, Tumor , Collagen/metabolism , Disease Progression , Epithelium/metabolism , Female , Fibrosis , Focal Adhesion Kinase 1/metabolism , Genes, Reporter , HMGB1 Protein/physiology , Humans , Macrophages/metabolism , Male , Metoclopramide , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neoplasms, Hormone-Dependent/physiopathology , Pancreatic Neoplasms/physiopathology , Phosphorylation , Pregnancy , Prolactin/deficiency , Prolactin/physiology , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering/genetics , Receptors, Prolactin/genetics , Receptors, Prolactin/metabolism , Recombinant Proteins/pharmacology , STAT3 Transcription Factor/metabolism , Stromal Cells/metabolism
13.
Cell Mol Gastroenterol Hepatol ; 8(4): 561-578, 2019.
Article in English | MEDLINE | ID: mdl-31330317

ABSTRACT

BACKGROUND & AIMS: Identification and validation of new functionally relevant and pharmacologically actionable targets for pancreatic ductal adenocarcinoma (PDAC) remains a great challenge. Premalignant acinar cell reprogramming (acinar-to-ductal metaplasia [ADM]) is a precursor of pancreatic intraepithelial neoplasia (PanIN) lesions that can progress to PDAC. This study investigated the role of proline-rich tyrosine kinase 2 (PYK2) in mutant Kras-induced and pancreatitis-associated ADM and PanIN formation, as well as in PDAC maintenance. METHODS: Genetically engineered mouse models of mutant Kras (glycine 12 to aspartic acid) and Pyk2 deletion were used for investigating the role of PYK2 in PDAC genesis in mice. In vitro ADM assays were conducted using primary pancreatic acinar cells isolated from mice. Immunohistochemistry, immunofluorescence, and a series of biochemical experiments were used to investigate upstream regulators/downstream targets of PYK2 in pancreatic carcinogenesis. PDAC cell line xenograft experiments were performed to study the role of PYK2 and its downstream target in PDAC maintenance. RESULTS: PYK2 was increased substantially in ADM lesions induced by mutant Kras or inflammatory injury. Pyk2 deletion remarkably suppressed ADM and PanIN formation in a mutant Kras-driven and pancreatitis-associated PDAC model, whereas PYK2 knockdown substantially inhibited PDAC cell growth in vitro and in nude mice. This study uncovered a novel yes-associated protein 1/transcriptional co-activator with PDZ binding motif/signal transducer and activator of transcription 3/PYK2/ß-catenin regulation axis in PDAC. Our results suggest that PYK2 contributes to PDAC genesis and maintenance by activating the Wnt/ß-catenin pathway through directly phosphorylating ß-cateninY654. CONCLUSIONS: The current study uncovers PYK2 as a novel downstream effector of mutant KRAS signaling, a previously unrecognized mediator of pancreatitis-induced ADM and a novel intervention target for PDAC.


Subject(s)
Carcinoma, Acinar Cell/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Focal Adhesion Kinase 2/metabolism , Pancreatic Neoplasms/metabolism , Precancerous Conditions/metabolism , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Carcinoma in Situ/genetics , Carcinoma in Situ/metabolism , Carcinoma in Situ/pathology , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle Proteins/metabolism , Cellular Reprogramming/physiology , Disease Models, Animal , Female , Focal Adhesion Kinase 2/genetics , Male , Metaplasia , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Wnt Signaling Pathway , YAP-Signaling Proteins
14.
Cell Mol Gastroenterol Hepatol ; 5(2): 169-185.e2, 2018.
Article in English | MEDLINE | ID: mdl-29693047

ABSTRACT

BACKGROUND & AIMS: Tissue hypoxia controls cell differentiation in the embryonic pancreas, and promotes tumor growth in pancreatic cancer. The cellular response to hypoxia is controlled by the hypoxia-inducible factor (HIF) proteins, including HIF2α. Previous studies of HIF action in the pancreas have relied on loss-of-function mouse models, and the effects of HIF2α expression in the pancreas have remained undefined. METHODS: We developed several transgenic mouse models based on the expression of an oxygen-stable form of HIF2α, or indirect stabilization of HIF proteins though deletion of von Hippel-Lindau, thus preventing HIF degradation. Furthermore, we crossed both sets of animals into mice expressing oncogenic KrasG12D in the pancreas. RESULTS: We show that HIF2α is not expressed in the normal human pancreas, however, it is up-regulated in human chronic pancreatitis. Deletion of von Hippel-Lindau or stabilization of HIF2α in mouse pancreata led to the development of chronic pancreatitis. Importantly, pancreatic HIF1α stabilization did not disrupt the pancreatic parenchyma, indicating that the chronic pancreatitis phenotype is specific to HIF2α. In the presence of oncogenic Kras, HIF2α stabilization drove the formation of cysts resembling mucinous cystic neoplasm (MCN) in humans. Mechanistically, we show that the pancreatitis phenotype is linked to expression of multiple inflammatory cytokines and activation of the unfolded protein response. Conversely, MCN formation is linked to activation of Wnt signaling, a feature of human MCN. CONCLUSIONS: We show that pancreatic HIF2α stabilization disrupts pancreatic homeostasis, leading to chronic pancreatitis, and, in the context of oncogenic Kras, MCN formation. These findings provide new mouse models of both chronic pancreatitis and MCN, as well as illustrate the importance of hypoxia signaling in the pancreas.

15.
Oncogene ; 37(14): 1845-1856, 2018 04.
Article in English | MEDLINE | ID: mdl-29367759

ABSTRACT

Pancreatic cancer (PDAC) is one of the most dismal of human malignancies. Inhibiting or delaying the progression of precursor lesions of PDAC, pancreatic intraepthial neoplasia (PanINs), to invasive cancer, would be a major step. In the present study, we used a transgenic murine model of pancreatic cancer to evaluate the impact of a conditional knockout of the transcription factor Snail1, a major factor in epithelial-to-mesenchymal transition, on acinar-to-ductal formation and on PanIN progression. By interbreeding conditional LsL-Snail floxf/wt ; LsL-Kras G12D and Pdx1-Cre strains, we obtained LsL-Kras G12D ;Pdx1-Cre(KP) mice, Snail1 heterozygous knockout LsL-Kras G12D ; LsL-Snail flox/- ;Pdx1-Cre(KPShet) mice or Snail1 homozygous knockout LsL-Kras G12D ;LsL-Snail flox/flox ;Pdx1-Cre(KPS) mice. Mice were then followed in a longitudinal study for 2, 4, 6, 8, 10, and 12 months. Furthermore, in mice with a genetic or pharmacological inhibition of Snail1, using the Snail1 inhibitor GN25, a model of pancreatic injury by administration of cerulein was introduced to evaluate ADM formation in this setting. A translational approach with a tissue microarray (TMA) of human PanINs and an in vivo nude mouse platform to test GN25 in human pancreatic adenocarcinoma was then adopted. Quantification of PanINs showed delayed initiation and progression of PanIN lesions at all ages in both homozygous and heterozygous Snaildel1;Pdx-1-Cre;LSL-KrasG12D/+-Mice. PanINs at TMA revealed snail expression in the majority of cases. GN25 showed growth inhibition in 2/2 human pancreatic adenocarcinomas using a nude mice in vivo platform. Genetic and pharmacologic abrogation of Snail1 signaling in exocrine pancreas impairs development of acinar-to-ductal metaplasia following cerulein-mediated pancreatic injury. The present study suggests a fundamental new approach to delay the progression of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/prevention & control , Naphthoquinones/therapeutic use , Pancreas/pathology , Pancreatic Neoplasms/prevention & control , Precancerous Conditions/drug therapy , Snail Family Transcription Factors , Animals , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/genetics , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Ceruletide , Disease Models, Animal , Disease Progression , Gene Knockdown Techniques , Heterografts , Humans , Metaplasia/chemically induced , Metaplasia/drug therapy , Metaplasia/genetics , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Pancreas/drug effects , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/chemically induced , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Snail Family Transcription Factors/antagonists & inhibitors , Snail Family Transcription Factors/genetics , Tumor Cells, Cultured
16.
Sci Rep ; 8(1): 1406, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29362419

ABSTRACT

It is well known that pancreatic recovery after a single episode of injury such as an isolated bout of pancreatitis occurs rapidly. It is unclear, however, what changes are inflicted in such conditions to the molecular landscape of the pancreas. In the caerulein hyperstimulation model of pancreatitis, the murine pancreas has the ability to recover within one week based on histological appearance. In this study, we sought to characterize by RNA-sequencing (RNA-seq) the transcriptional profile of the recovering pancreas up to two weeks post-injury. We found that one week after injury there were 319 differentially expressed genes (DEGs) compared with baseline and that after two weeks there were 53 DEGs. Forty (12.5%) of the DEGs persisted from week one to week two, and another 13 DEGs newly emerged in the second week. Amongst the top up-regulated DEGs were several trypsinogen genes (trypsinogen 4, 5, 12, 15, and 16). To our knowledge, this is the first characterization of the transcriptome during pancreatic recovery by deep sequencing, and it reveals on a molecular basis that there is an ongoing recovery of the pancreas even after apparent histological resolution. The findings also raise the possibility of an emerging novel transcriptome upon pancreatic recovery.


Subject(s)
Ceruletide/adverse effects , Gene Expression Profiling/methods , Pancreatitis/genetics , Regeneration , Animals , Disease Models, Animal , Gene Expression Regulation , Gene Regulatory Networks , Humans , Mice , Pancreatitis/chemically induced , Sequence Analysis, RNA/methods
17.
Sci Rep ; 7(1): 17539, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235528

ABSTRACT

Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1+/CD90-/Ecad- cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).


Subject(s)
Pancreas/cytology , Pancreas/metabolism , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Cadherins/metabolism , Cell Differentiation , Gene Expression , Homeodomain Proteins/metabolism , Humans , Isoenzymes/metabolism , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Retinal Dehydrogenase/metabolism , Thy-1 Antigens/metabolism , Trans-Activators/metabolism
18.
Cell Mol Gastroenterol Hepatol ; 3(1): 119-128, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28090570

ABSTRACT

BACKGROUND AND AIMS: There is a pressing need to develop effective preventative therapies for post-ERCP pancreatitis (PEP). We demonstrated that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. METHODS: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel AAV-Ela-iCre into the pancreatic duct of a calcineurin floxed line. RESULTS: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, can largely prevent PEP. CONCLUSIONS: These results provide impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP.

19.
Endocrinology ; 157(1): 166-75, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26505114

ABSTRACT

A key question in diabetes research is whether new ß-cells can be derived from endogenous, nonendocrine cells. The potential for pancreatic ductal cells to convert into ß-cells is a highly debated issue. To date, it remains unclear what anatomical process would result in duct-derived cells coming to exist within preexisting islets. We used a whole-mount technique to directly visualize the pancreatic ductal network in young wild-type mice, young humans, and wild-type and transgenic mice after partial pancreatectomy. Pancreatic ductal networks, originating from the main ductal tree, were found to reside deep within islets in young mice and humans but not in mature mice or humans. These networks were also not present in normal adult mice after partial pancreatectomy, but TGF-ß receptor mutant mice demonstrated formation of these intraislet duct structures after partial pancreatectomy. Genetic and viral lineage tracings were used to determine whether endocrine cells were derived from pancreatic ducts. Lineage tracing confirmed that pancreatic ductal cells can typically convert into new ß-cells in normal young developing mice as well as in adult TGF-ß signaling mutant mice after partial pancreatectomy. Here the direct visual evidence of ducts growing into islets, along with lineage tracing, not only represents strong evidence for duct cells giving rise to ß-cells in the postnatal pancreas but also importantly implicates TGF-ß signaling in this process.


Subject(s)
Cell Transdifferentiation , Insulin-Secreting Cells/cytology , Insulin/biosynthesis , Islets of Langerhans/cytology , Pancreatic Ducts/cytology , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Adolescent , Age Factors , Animals , Cadaver , Child, Preschool , Female , Humans , Infant , Insulin-Secreting Cells/physiology , Islets of Langerhans/growth & development , Islets of Langerhans/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Male , Mice, Mutant Strains , Mice, Transgenic , Mutant Proteins/genetics , Mutant Proteins/metabolism , Pancreatectomy , Pancreatic Ducts/growth & development , Pancreatic Ducts/physiology , Protein Serine-Threonine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Regeneration , Red Fluorescent Protein
20.
Am J Pathol ; 185(12): 3304-15, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26476347

ABSTRACT

The mechanisms by which drugs induce pancreatitis are unknown. A definite cause of pancreatitis is due to the antiepileptic drug valproic acid (VPA). On the basis of three crucial observations-that VPA inhibits histone deacetylases (HDACs), HDACs mediate pancreas development, and aspects of pancreas development are recapitulated during recovery of the pancreas after injury-we hypothesized that VPA does not cause injury on its own, but it predisposes patients to pancreatitis by inhibiting HDACs and provoking an imbalance in pancreatic recovery. In an experimental model of pancreatic injury, we found that VPA delayed recovery of the pancreas and reduced acinar cell proliferation. In addition, pancreatic expression of class I HDACs (which are the primary VPA targets) increased in the midphase of pancreatic recovery. VPA administration inhibited pancreatic HDAC activity and led to the persistence of acinar-to-ductal metaplastic complexes, with prolonged Sox9 expression and sustained ß-catenin nuclear activation, findings that characterize a delay in regenerative reprogramming. These effects were not observed with valpromide, an analog of VPA that lacks HDAC inhibition. This is the first report, to our knowledge, that VPA shifts the balance toward pancreatic injury and pancreatitis through HDAC inhibition. The work also identifies a new paradigm for therapies that could exploit epigenetic reprogramming to enhance pancreatic recovery and disorders of pancreatic injury.


Subject(s)
Acinar Cells/drug effects , Anticonvulsants/toxicity , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/physiology , Pancreatitis/chemically induced , Valproic Acid/toxicity , Acinar Cells/pathology , Animals , Anticonvulsants/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Ceruletide , Male , Mice , Pancreas/physiology , Pancreatitis/enzymology , Pancreatitis/pathology , Regeneration/drug effects , Up-Regulation , Valproic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...