Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Appl Acarol ; 91(2): 319-330, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37735304

ABSTRACT

The cattle tick Rhipicephalus (Boophilus) microplus is a major problem of concern for cattle industry in tropical and subtropical areas. Control of cattle tick is based mainly on the use of chemical acaricides, which has contributed to the emerging problem of selection of resistant tick lineages. Plants have been used as an alternative to conventional acaricidal drugs. On the other hand, the acaricidal activity of hydroethanolic extract of Randia aculeata seed (EHRA) has been demonstrated against R. microplus under laboratory conditions. However, the utility of EHRA seed as a potential acaricidal needs to be determined under field conditions. For this reason, the aim of this study was to evaluate the efficacy of the EHRA against R. microplus sprayed on naturally infested calves, determine the effect of the EHRA seed on acetylcholinesterase activity in R. microplus larval and identify the chemical composition of EHRA. Forty-five male calves were divided in three groups and treated with: G1 water; G2 EHRA 20% w/v and G3 coumaphos 0.2% v/v. Acetylcholinesterase (AChE) activity in R. microplus larvae was determined by a colorimetric assay. The chemical composition of EHRA was accessed through HPLC/MS. Significantly fewer ticks were observed after 24 h on the treated group compared to control group. EHRA significantly inhibited in vitro AChE activity in R. microplus at all tested concentrations. Chlorogenic acid, vanillinic acid, p-coumaric acid, caffeic acid. rutin, quercetin, (-)-epicatechin, 4-hydroxybenzoic acid, quercetin, vanillin, 2,4-dimethoxy-6-methylbenzoic acid, scopoletin and ferulic acid were identified in the extract. The results provided new data for the elucidation of the mechanisms of EHRA acaricide action and to further evaluate the use as a new alternative control agent against R. microplus under in vivo conditions.


Subject(s)
Acaricides , Cattle Diseases , Coleoptera , Ixodidae , Rhipicephalus , Tick Infestations , Animals , Cattle , Acetylcholinesterase , Quercetin/pharmacology , Quercetin/therapeutic use , Acaricides/pharmacology , Seeds , Larva , Plant Extracts/pharmacology , Cattle Diseases/drug therapy , Cattle Diseases/prevention & control , Tick Infestations/drug therapy , Tick Infestations/prevention & control , Tick Infestations/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...