Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(7)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34371570

ABSTRACT

Botanical gardens have long contributed to plant science and have played a leading role in ex situ conservation, namely of threatened tree species. Focusing on the three botanical gardens of Lisbon (i.e., Botanical Garden of Ajuda-JBA, Lisbon Botanical Garden-JBL, and Tropical Botanical Garden-JBT), this study aims to reveal their natural heritage and to understand the historical motivations for their creation. Our results showed that these gardens contain a total of 2551 tree specimens, corresponding to 462 taxa, within 80 plant families. Of these, 85 taxa are found in the three gardens, and more than half of the taxa are hosted in JBL (334 taxa), whereas 230 and 201 taxa were recorded in JBT and JBA, respectively. The motivations for the creation of each garden are reflected in the different geographic origins of the trees they host in their living collections. The Palearctic species are dominant in JBA and JBL, and Tropical trees prevail in JBT. With more than 250 years of history, these gardens hold an invaluable natural and historical heritage, with their living collections providing valuable sources of information for the conservation of threatened plant species, at local and global scales.

2.
Ann Bot ; 117(1): 37-50, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26424783

ABSTRACT

BACKGROUND AND AIMS: The genus Limonium (Plumbaginaceae) has long been recognized to have sexual and apomictic (asexual seed formation) modes of reproduction. This study aimed to elucidate phylogeographical patterns and modes of reproduction in diploid and tetraploid Limonium species, namely three putative sexual diploid species with morphological affinities (L. nydeggeri, L. ovalifolium, L. lanceolatum) and three related, probably apomict tetraploid species (L. binervosum, L. dodartii, L. multiflorum). METHODS: cpDNA diversity and differentiation between natural populations of the species were investigated using two chloroplast sequence regions (trnL intron and trnL-trnF intergenic spacer). Floral heteromorphies, ovule cytoembryological analyses and pollination and crossing tests were performed in representative species of each ploidy group, namely diploid L. ovalifolium and tetraploid L. multiflorum, using plants from greenhouse collections. KEY RESULTS AND CONCLUSIONS: Genetic analyses showed that diploid species have a higher haplotype diversity and a higher number of unique (endemic) haplotypes than tetraploid species. Network analysis revealed correlations between cpDNA haplotype distribution and ploidy groups, species groups and geographical origin, and haplotype sharing within and among species with distinct ploidy levels. Reproductive biology analyses showed that diploid L. ovalifolium mainly forms meiotically reduced tetrasporic embryo sacs of Gagea ova, Adoxa and Drusa types. Limonium multiflorum, however, has only unreduced, diplosporic (apomictic) embryo sacs of Rudbeckia type, and autonomous apomictic development seems to occur. Taken together, the findings provide evidence of a pattern of 'geographical parthenogenesis' in which quaternary climatic oscillations appear to be involved in the geographical patterns of coastal diploid and tetraploid Limonium species.


Subject(s)
Diploidy , Parthenogenesis , Phylogeography , Plumbaginaceae/physiology , Salt-Tolerant Plants/physiology , Tetraploidy , DNA, Chloroplast/genetics , Genetic Variation , Ovule/growth & development , Plumbaginaceae/genetics , Plumbaginaceae/ultrastructure , Pollen/ultrastructure , Portugal , Reproduction , Salt-Tolerant Plants/ultrastructure , Seeds/ultrastructure
3.
Ann Bot ; 115(3): 369-83, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25261345

ABSTRACT

BACKGROUND AND AIMS: Limonium is a well-known example of a group of plants that is taxonomically complex due to certain biological characteristics that hamper species' delineation. The closely related polyploid species Limonium vulgare Mill., L. humile Mill. and L. narbonense Mill. are defined species and can be used for studying patterns of morphological and reproductive variation. The first two taxa are usually found in Atlantic Europe and the third in the Mediterranean region, but a number of intermediate morphological forms may be present alongside typical examples of these species. This study attempts to elucidate morphological, floral and karyological diversity representative of these taxa in the Iberian Peninsula. METHODS: The extent of morphological differentiation was tested through comparison of 197 specimens from both Portugal and Spain using 17 descriptive morphological characters and 19 diagnostic morphometric characters. Analyses of floral morphisms (heterostyly and pollen-stigma dimorphism) and karyological determinations were also conducted. KEY RESULTS AND CONCLUSIONS: Discriminant analysis using morphometric variables reliably assigned individuals in natural populations to their respective groups. In addition, the results provide the first direct evidence that L. narbonense and a new species, LIMONIUM MARITIMUM: Caperta, Cortinhas, Paes, Guara, Espírito-Santo and Erben, SP NOV: , related to L. vulgare are present on Portuguese coasts. Most of these species are found together in mixed populations, especially L. vulgare and L. narbonense. It is hypothesized that taxonomic biodiversity found in sites where distinct species co-occur facilitates the evolutionary processes of hybridization, introgression and apomixis. This study therefore contributes to the elucidation of the taxonomic diversity in L. vulgare-related species and may also help in implementing future conservation programmes to maintain the evolutionary processes generating biodiversity.


Subject(s)
Biodiversity , Biological Evolution , Plumbaginaceae/classification , Genetic Variation , Phylogeny , Plumbaginaceae/anatomy & histology , Plumbaginaceae/genetics , Plumbaginaceae/physiology , Portugal , Reproduction , Salt-Tolerant Plants/anatomy & histology , Salt-Tolerant Plants/classification , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/physiology , Spain
4.
BMC Plant Biol ; 13: 205, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24314092

ABSTRACT

BACKGROUND: The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. RESULTS: A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. CONCLUSIONS: Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition.


Subject(s)
Biodiversity , Diploidy , Ecosystem , Epigenesis, Genetic , Plumbaginaceae/anatomy & histology , Plumbaginaceae/genetics , Tetraploidy , DNA Methylation/genetics , Discriminant Analysis , Geography , Phenotype , Polymorphism, Genetic , Portugal , Principal Component Analysis , Seawater , Species Specificity
5.
Sex Plant Reprod ; 25(4): 305-18, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23086613

ABSTRACT

The genus Limonium Miller, a complex taxonomic group, comprises annuals and perennials that can produce sexual and/or asexual seeds (apomixis). In this study, we used diverse cytogenetic and cytometric approaches to analyze male sporogenesis and gametogenesis for characterizing male reproductive output on seed production in Limonium ovalifolium and Limonium multiflorum. We showed here that the first species is mostly composed of diploid cytotypes with 2n = 16 chromosomes and the latter species by tetraploid cytotypes with 2n = 32, 34, 35, 36 chromosomes and had a genome roughly twice as big as the former one. In both species, euploid and aneuploid cytotypes with large metacentric chromosomes having decondensed interstitial sites were found within and among populations, possibly involved in chromosomal reconstructions. L. ovalifolium diploids showed regular meiosis resulting in normal tetrads, while diverse chromosome pairing and segregation irregularities leading to the formation of abnormal meiotic products are found in balanced and non-balanced L. multiflorum tetraploids. Before anther dehiscence, the characteristic unicellular, bicellular, or tricellular pollen grains showing the typical Limonium micro- or macro-reticulate exine ornamentation patterns were observed in L. ovalifolium using scanning electron microscopy. Most of these grains were viable and able to produce pollen tubes in vitro. In both balanced and unbalanced L. multiflorum tetraploids, microspores only developed until the "ring-vacuolate stage" with a collapsed morphology without the typical exine patterns, pointing to a sporophytic defect. These microspores were unviable and therefore never germinated in vitro. L. ovalifolium individuals presented larger pollen grains than those of L. multiflorum, indicating that pollen size and ploidy levels are not correlated in the Limonium system. Cytohistological studies in mature seeds from both species revealed that an embryo and a residual endosperm were present in each seed. Flow cytometric seed screens using such mature seeds showed quantitative variations in seeds ploidy level. It is concluded that male function seems to play an important role in the reproduction modes of Limonium diploids and tetraploids.


Subject(s)
Apomixis , Chromosomes, Plant/genetics , Plant Infertility , Plumbaginaceae/physiology , Polyploidy , Cell Survival , Cytogenetic Analysis , DNA, Plant/analysis , DNA, Plant/genetics , Diploidy , Flow Cytometry , Gametogenesis, Plant , Genetic Variation , Genome Size , Karyotype , Microscopy, Electron, Scanning , Models, Biological , Plumbaginaceae/cytology , Plumbaginaceae/genetics , Plumbaginaceae/growth & development , Pollen/cytology , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Reproduction , Seeds/cytology , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Tetraploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...