Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol Resour ; 24(1): e13889, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010882

ABSTRACT

Thiotrophic symbioses between sulphur-oxidizing bacteria and various unicellular and metazoan eukaryotes are widespread in reducing marine environments. The giant colonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic symbionts that has been cultivated along with its symbiont, the vertically transmitted ectosymbiont Candidatus Thiobius zoothamnicola (short Thiobius). Because theoretical predictions posit a smaller genome in vertically transmitted endosymbionts compared to free-living relatives, we investigated whether this is true also for an ectosymbiont. We used metagenomics to recover the high-quality draft genome of this bacterial symbiont. For comparison we have also sequenced a closely related free-living cultured but not formally described strain Milos ODIII6 (short ODIII6). We then performed comparative genomics to assess the functional capabilities at gene, metabolic pathway and trait level. 16S rRNA gene trees and average amino acid identity confirmed the close phylogenetic relationship of both bacteria. Indeed, Thiobius has about a third smaller genome than its free-living relative ODIII6, with reduced metabolic capabilities and fewer functional traits. The functional capabilities of Thiobius were a subset of those of the more versatile ODIII6, which possessed additional genes for oxygen, sulphur and hydrogen utilization and for the acquisition of phosphorus illustrating features that may be adaptive for the unstable environmental conditions at hydrothermal vents. In contrast, Thiobius possesses genes potentially enabling it to utilize lactate and acetate heterotrophically, compounds that may be provided as byproducts by the host. The present study illustrates the effect of strict host-dependence of a bacterial ectosymbiont on genome evolution and host adaptation.


Subject(s)
Bacteria , Genomics , Animals , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis , Sulfur/metabolism
2.
J Fungi (Basel) ; 9(4)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37108894

ABSTRACT

Oceanic fungi are widely understudied compared to their terrestrial counterparts. However, they have been shown to be important degraders of organic matter in the global pelagic oceans. By examining the physiological characteristics of fungi isolated from the pelagic waters of the ocean it is possible to infer specific functions of each species in the biogeochemical processes that occur in the marine ecosystem. In this study, we isolated three pelagic fungi from different stations and depths across a transect in the Atlantic Ocean. We identified two yeasts [(Scheffersomyces spartinae (Debaryomycetaceae, Saccharomycetes, Ascomycota) and Rhodotorula sphaerocarpa (Sporidiobolaceae, Microbotryomycetes, Basidiomycota)], and the hyphae-morphotype fungus Sarocladium kiliense (Hypocreales, Sordariomycetes, Ascomycota), and conducted physiological experiments to investigate their preferred carbon uptake as well as their growth patterns under different environmental conditions. Despite their taxonomic and morphological differences, all species exhibited a high tolerance towards a wide range of salinities (0-40 g/L) and temperatures (5-35 °C). Furthermore, a shared metabolic preference for oxidizing amino acids was found among all fungal isolates. Collectively, this study provides relevant information on the physiological properties of oceanic pelagic fungi, revealing a high tolerance towards salinity and temperature changes, ultimately contributing to understanding their ecology and distribution in the oceanic water column.

3.
Mol Ecol Resour ; 22(8): 3106-3123, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35699368

ABSTRACT

The mutualistic interactions between Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone (short Endoriftia) have been extensively researched. However, the closed Endoriftia genome is still lacking. Here, by employing single-molecule real-time sequencing we present the closed chromosomal sequence of Endoriftia. In contrast to theoretical predictions of enlarged and mobile genetic element-rich genomes related to facultative endosymbionts, the closed Endoriftia genome is streamlined with fewer than expected coding sequence regions, insertion-, prophage-sequences and transposase-coding sequences. Automated and manually curated functional analyses indicated that Endoriftia is more versatile regarding sulphur metabolism than previously reported. We identified the presence of two identical rRNA operons and two long CRISPR regions in the closed genome. Additionally, pangenome analyses revealed the presence of three types of secretion systems (II, IV and VI) in the different Endoriftia populations indicating lineage-specific adaptations. The in depth mobilome characterization identified the presence of shared genomic islands in the different Endoriftia drafts and in the closed genome, suggesting that the acquisition of foreign DNA predates the geographical dispersal of the different endosymbiont populations. Finally, we found no evidence of epigenetic regulation in Endoriftia, as revealed by gene screenings and absence of methylated modified base motifs in the genome. As a matter of fact, the restriction-modification system seems to be dysfunctional in Endoriftia, pointing to a higher importance of molecular memory-based immunity against phages via spacer incorporation into CRISPR system. The Endoriftia genome is the first closed tubeworm endosymbiont to date and will be valuable for future gene oriented and evolutionary comparative studies.


Subject(s)
Hydrothermal Vents , DNA Restriction-Modification Enzymes/genetics , Epigenesis, Genetic , Sulfur , Symbiosis/genetics , Transposases/genetics
4.
PLoS One ; 17(2): e0254910, 2022.
Article in English | MEDLINE | ID: mdl-35213532

ABSTRACT

The mutualism between the thioautotrophic bacterial ectosymbiont Candidatus Thiobius zoothamnicola and the giant ciliate Zoothamnium niveum thrives in a variety of shallow-water marine environments with highly fluctuating sulfide emissions. To persist over time, both partners must reproduce and ensure the transmission of symbionts before the sulfide stops, which enables carbon fixation of the symbiont and nourishment of the host. We experimentally investigated the response of this mutualism to depletion of sulfide. We found that colonies released some initially present but also newly produced macrozooids until death, but in fewer numbers than when exposed to sulfide. The symbionts on the colonies proliferated less without sulfide, and became larger and more rod-shaped than symbionts from freshly collected colonies that were exposed to sulfide and oxygen. The symbiotic monolayer was severely disturbed by growth of other microbes and loss of symbionts. We conclude that the response of both partners to the termination of sulfide emission was remarkably quick. The development and the release of swarmers continued until host died and thus this behavior contributed to the continuation of the association.


Subject(s)
Ciliophora/genetics , Rhizobiaceae/genetics , Sulfides/metabolism , Symbiosis/genetics , Animals , Aquatic Organisms/genetics , Aquatic Organisms/physiology , Bacteria/genetics , Carbon Cycle/genetics , Ciliophora/physiology , Phylogeny , Rhizobiaceae/physiology
5.
Sci Rep ; 9(1): 15081, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31636334

ABSTRACT

Evolutionary theory predicts potential shifts between cooperative and uncooperative behaviour under fluctuating environmental conditions. This leads to unstable benefits to the partners and restricts the evolution of dependence. High dependence is usually found in those hosts in which vertically transmitted symbionts provide nutrients reliably. Here we study host dependence in the marine, giant colonial ciliate Zoothamnium niveum and its vertically transmitted, nutritional, thiotrophic symbiont from an unstable environment of degrading wood. Previously, we have shown that sulphidic conditions lead to high host fitness and oxic conditions to low fitness, but the fate of the symbiont has not been studied. We combine several experimental approaches to provide evidence for a sulphide-tolerant host with striking polyphenism involving two discrete morphs, a symbiotic and an aposymbiotic one. The two differ significantly in colony growth form and fitness. This polyphenism is triggered by chemical conditions and elicited by the symbiont's presence on the dispersing swarmer. We provide evidence of a single aposymbiotic morph found in nature. We propose that despite a high fitness loss when aposymbiotic, the ciliate has retained a facultative life style and may use the option to live without its symbiont to overcome spatial and temporal shortage of sulphide in nature.


Subject(s)
Bacteria/metabolism , Ciliophora/microbiology , Host-Pathogen Interactions , Sulfides/pharmacology , Symbiosis , Bacteria/drug effects , Bayes Theorem , Ciliophora/drug effects , Ciliophora/growth & development , Ciliophora/ultrastructure , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Symbiosis/drug effects
6.
ISME J ; 12(3): 714-727, 2018 03.
Article in English | MEDLINE | ID: mdl-29426952

ABSTRACT

The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.


Subject(s)
Gammaproteobacteria/physiology , Oligohymenophorea/microbiology , Oligohymenophorea/physiology , Symbiosis , Autoradiography , Carbon/metabolism , Carbon Cycle , Chemoautotrophic Growth , Gammaproteobacteria/genetics , In Situ Hybridization, Fluorescence , Mass Spectrometry , Oxidation-Reduction , Sulfides/metabolism
7.
Front Microbiol ; 5: 145, 2014.
Article in English | MEDLINE | ID: mdl-24778630

ABSTRACT

Symbioses between chemoautotrophic sulfur-oxidizing (thiotrophic) bacteria and protists or animals are among the most diverse and prevalent in the ocean. They are extremely difficult to maintain in aquaria and no thiotrophic symbiosis involving an animal host has ever been successfully cultivated. In contrast, we have cultivated the giant ciliate Zoothamnium niveum and its obligate ectosymbiont Candidatus Thiobios zoothamnicoli in small flow-through aquaria. This review provides an overview of the host and the symbiont and their phylogenetic relationships. We summarize our knowledge on the ecology, geographic distribution and life cycle of the host, on the vertical transmission of the symbiont, and on the cultivation of this symbiosis. We then discuss the benefits and costs involved in this cooperation compared with other thiotrophic symbioses and outline our view on the evolution and persistence of this byproduct mutualism.

SELECTION OF CITATIONS
SEARCH DETAIL
...