Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Rheum Dis ; 65(10): 1279-85, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16679431

ABSTRACT

BACKGROUND: C4b-binding protein (C4BP) is a plasma oligomeric glycoprotein that participates in the regulation of complement and haemostasis. Complement-regulatory activity depends on the C4BPalpha-polypeptide, whereas the C4BPbeta-polypeptide inactivates protein S, interfering with the anti-coagulatory protein C-dependent pathway. OBJECTIVE: To investigate the expression of C4BPbeta in the rheumatoid joint. METHODS: Expression of C4BP was studied in synovial explants from patients with rheumatoid arthritis, osteoarthritis and healthy controls, using immunohistochemistry and in situ hybridisation. C4BP isoforms and free C4BPbeta were studied in synovial effusions from patients with rheumatoid arthritis, osteoarthritis and microcrystalline arthritis (MCA) by immunoblotting; total and free protein S levels were studied by enzyme immunoassay. RESULTS: C4BPbeta was overexpressed in the synovial membranes of patients with rheumatoid arthritis, in close association with the severity of synovitis and the extension of interstitial fibrin deposits. As many as 85% fluids from patients with rheumatoid arthritis contained free C4BPbeta, whereas this unusual polypeptide was present in 50% fluids from patients with MCA and 40% fluids from patients with osteoarthritis. Free protein S at the effusions was pathologically reduced in patients with rheumatoid arthritis and MCA, and remained normal in patients with osteoarthritis. CONCLUSION: C4BPbeta is expressed by the inflamed synovial tissue, where it can participate in processes of tissue remodelling associated with invasive growth.


Subject(s)
Arthritis/metabolism , Histocompatibility Antigens/metabolism , Synovial Membrane/metabolism , Adult , Arthritis/pathology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Complement C4b-Binding Protein , Fibrin/metabolism , Humans , Immunoenzyme Techniques , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Protein Isoforms/metabolism , Protein S/metabolism , Synovial Fluid/metabolism , Synovial Membrane/pathology , Synovitis/metabolism , Synovitis/pathology
3.
Mol Genet Metab ; 80(3): 315-20, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14680978

ABSTRACT

Methylcrotonylglycinuria (MCG; MIM 210200) is an autosomal recessive inherited human disorder caused by the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC, E.C.6.4.1.4), involved in leucine catabolism. This mitochondrial enzyme is one of the four biotin-dependent carboxylases known in humans. MCC is composed of two different types of subunits, alpha and beta, encoded by the nuclear genes MCCA and MCCB, respectively, recently cloned and characterized. Several mutations have been identified, in both genes, the majority are missense mutations along with splicing mutations and small insertions/deletions. We have expressed four missense mutations, two MCCA and two MCCB mapping to highly evolutionarily conserved residues, by transient transfection of SV40-transformed deficient fibroblasts in order to confirm their pathogenic effect. All the missense mutations expressed resulted in null or severely diminished MCC activity providing direct evidence that they are disease-causing ones. The MCCA mutations have been analysed in the context of three-dimensional structural information modelling the changes in the crystallized biotin carboxylase subunit of the Escherichia coli acetyl-CoA carboxylase. The apparent severity of all the MCC mutations contrasts with the variety of the clinical phenotypes suggesting that there are other cellular and metabolic unknown factors that affect the resulting phenotype.


Subject(s)
Carbon-Carbon Ligases/deficiency , Carbon-Carbon Ligases/genetics , Gene Expression , Mutation, Missense/genetics , Amino Acid Sequence , Conserved Sequence/genetics , Fibroblasts , Genetic Vectors , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Structure, Quaternary , Sequence Alignment , Sequence Analysis, DNA , Simian virus 40 , Transfection
4.
Am J Hum Genet ; 68(2): 334-46, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11170888

ABSTRACT

3-Methylcrotonylglycinuria is an inborn error of leucine catabolism and has a recessive pattern of inheritance that results from the deficiency of 3-methylcrotonyl-CoA carboxylase (MCC). The introduction of tandem mass spectrometry in newborn screening has revealed an unexpectedly high incidence of this disorder, which, in certain areas, appears to be the most frequent organic aciduria. MCC, an heteromeric enzyme consisting of alpha (biotin-containing) and beta subunits, is the only one of the four biotin-dependent carboxylases known in humans that has genes that have not yet been characterized, precluding molecular studies of this disease. Here we report the characterization, at the genomic level and at the cDNA level, of both the MCCA gene and the MCCB gene, encoding the MCC alpha and MCC beta subunits, respectively. The 19-exon MCCA gene maps to 3q25-27 and encodes a 725-residue protein with a biotin attachment site; the 17-exon MCCB gene maps to 5q12-q13 and encodes a 563-residue polypeptide. We show that disease-causing mutations can be classified into two complementation groups, denoted "CGA" and "CGB." We detected two MCCA missense mutations in CGA patients, one of which leads to absence of biotinylated MCC alpha. Two MCCB missense mutations and one splicing defect mutation leading to early MCC beta truncation were found in CGB patients. A fourth MCCB mutation also leading to early MCC beta truncation was found in two nonclassified patients. A fungal model carrying an mccA null allele has been constructed and was used to demonstrate, in vivo, the involvement of MCC in leucine catabolism. These results establish that 3-methylcrotonylglycinuria results from loss-of-function mutations in the genes encoding the alpha and beta subunits of MCC and complete the genetic characterization of the four human biotin-dependent carboxylases.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Carbon-Carbon Ligases/genetics , Leucine/metabolism , Adult , Amino Acid Metabolism, Inborn Errors/enzymology , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Sequence , Aspergillus nidulans/drug effects , Aspergillus nidulans/genetics , Aspergillus nidulans/growth & development , Base Sequence , Blotting, Northern , Carbon-Carbon Ligases/metabolism , Child, Preschool , Chromosome Mapping , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 5/genetics , DNA/chemistry , DNA/genetics , DNA Mutational Analysis , DNA, Complementary/chemistry , DNA, Complementary/genetics , Exons , Female , Gene Expression Regulation, Enzymologic , Genes/genetics , Humans , In Situ Hybridization, Fluorescence , Infant , Introns , Isoenzymes/genetics , Isoenzymes/metabolism , Leucine/pharmacology , Molecular Sequence Data , Mutation , Protein Subunits , RNA/genetics , RNA/metabolism , Radiation Hybrid Mapping , Sequence Analysis, DNA , Tissue Distribution , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...