Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 95(3): 1108-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22365194

ABSTRACT

Lactobacillus delbrueckii ssp. lactis CRL 581, a thermophilic lactic acid bacterium used as a starter culture for the manufacture of several fermented dairy products, possesses an efficient proteolytic system that is able to release a series of potentially bioactive peptides (i.e., antihypertensive and phosphopeptides) from α- and ß-caseins. Considering the potential beneficial health effects of the peptides released by L. delbrueckii ssp. lactis CRL 581 from milk proteins, the aim of this work was to analyze the anti-mutagenic and anti-inflammatory properties of the casein hydrolysates generated by the cell envelope-associated proteinase of this bacterium. The ability of α- and ß-casein hydrolysates to suppress the mutagenesis of a direct-acting mutagen 4-nitroquinoline-N-oxide on Salmonella typhimurium TA 98 and TA 100 increased concomitantly with the time of casein hydrolysis. The anti-inflammatory effect of the ß-casein hydrolysate was evaluated using a trinitrobenzene sulfonic acid (TNBS)-induced Crohn's disease murine model. The hydrolysate was administered to mice 10 d before the intrarectal inoculation of TNBS. The mice that received ß-casein hydrolysate previously to TNBS showed decreased mortality rates, faster recovery of initial body weight loss, less microbial translocation to the liver, decreased ß-glucuronidase and myeloperoxidase activities in the gut, and decreased colonic macroscopic and microscopic damage compared with the animals that did not receive this hydrolysate. In addition, ß-casein hydrolysate exerted a beneficial effect on acute intestinal inflammation by increased interleukin 10 and decreased IFN-γ production in the gut. Our findings are consistent with the health-promoting attributes of the milk products fermented by L. delbrueckii ssp. lactis CRL 581 and open up new opportunities for developing novel functional foods.


Subject(s)
Caseins/therapeutic use , Colitis/prevention & control , Lactobacillus delbrueckii/metabolism , Protein Hydrolysates/therapeutic use , Animals , Antimutagenic Agents/pharmacology , Caseins/pharmacology , Colitis/chemically induced , Disease Models, Animal , Female , Glucuronidase/metabolism , Mice , Mice, Inbred BALB C , Mutagenicity Tests , Peroxidase/metabolism , Protein Hydrolysates/pharmacology , Trinitrobenzenesulfonic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...