Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 55(2): 1167-1177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557863

ABSTRACT

It is essential to evaluate the effects of operating conditions in submerged cultures of filamentous microorganisms. In particular, the impeller type influences the flow pattern, power consumption, and energy dissipation, leading to differences in the hydrodynamic environment that affect the morphology of the microorganism. This work investigated the effect of different impeller types, namely the Rushton turbine (RT-RT) and Elephant Ear impellers in up-pumping (EEUP) and down-pumping (EEDP) modes, on cellular morphology and clavulanic acid (CA) production by Streptomyces clavuligerus in a stirred-tank bioreactor. At 800 rpm and 0.5 vvm, the cultivations performed using RT-RT and EEUP impellers provided higher shear conditions and oxygen transfer rates than those observed with EEDP. These conditions resulted in higher clavulanic acid production using RT-RT (380.7 mg/L) and EEUP (453.3 mg/L) impellers, compared to EEDP (196.6 mg/L). Although the maximum CA concentration exhibited the same order of magnitude for RT-RT and EEUP impellers, the latter presented 40% of the specific power consumption (4.9 kW/m3) compared to the classical RT-RT (12.0 kW/m3). The specific energy for CA production ( E CA ), defined as the energy cost to produce 1 mg of CA, was 3.5 times lower using the EEUP impeller (1.91 kJ/mgCA) when compared to RT-RT (5.91 kJ/mgCA). Besides, the specific energy for O2 transfer ( E O 2 ), the energy required to transfer 1 mmol of O2, was 2.3 times lower comparing the EEUP impeller (3.28 kJ/mmolO2) to RT-RT (7.65 kJ/mmolO2). The results demonstrated the importance of choosing the most suitable impeller configuration in conventional bioreactors to manufacture bioproducts.


Subject(s)
Bioreactors , Clavulanic Acid , Streptomyces , Clavulanic Acid/biosynthesis , Streptomyces/metabolism , Streptomyces/growth & development , Bioreactors/microbiology , Fermentation , Anti-Bacterial Agents/biosynthesis
2.
Bioprocess Biosyst Eng ; 37(5): 805-12, 2014 May.
Article in English | MEDLINE | ID: mdl-24078146

ABSTRACT

Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.


Subject(s)
Bioreactors , Cellulose/chemistry , Models, Theoretical , Oxygen/chemistry , Saccharum/chemistry
3.
Bioresour Technol ; 112: 270-4, 2012 May.
Article in English | MEDLINE | ID: mdl-22409979

ABSTRACT

Sequential solid-state and submerged cultivation with sugarcane bagasse as substrate for cellulase production by Aspergillus niger A12 was assessed by measuring endoglucanase activity. An unconventional pre-culture with an initial fungal growth phase under solid-state cultivation was followed by a transition to submerged fermentation by adding the liquid culture medium to the mycelium grown on solid substrate. For comparison, control experiments were conducted using conventional submerged cultivation. The cultures were carried out in shake flasks and in a 5-L bubble column bioreactor. An endoglucanase productivity of 57 ± 13 IU/L/h was achieved in bubble column cultivations prepared using the new method, representing an approximately 3-fold improvement compared to conventional submerged fermentation. Therefore, the methodology proposed here of a sequential fermentation process offers a promising alternative for cellulase production.


Subject(s)
Aspergillus niger/enzymology , Aspergillus niger/growth & development , Cell Culture Techniques/methods , Cellulase/biosynthesis , Cellulose/pharmacology , Saccharum/chemistry , Aspergillus niger/drug effects , Bioreactors/microbiology , Endo-1,4-beta Xylanases/metabolism , Fermentation/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...