Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Sci Transl Med ; 15(687): eade0550, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36921035

ABSTRACT

The diversity of vaccination modalities and infection history are both variables that have an impact on the immune memory of individuals vaccinated against SARS-CoV-2. To gain more accurate knowledge of how these parameters imprint on immune memory, we conducted a long-term follow-up of SARS-CoV-2 spike protein-specific immune memory in unvaccinated and vaccinated COVID-19 convalescent individuals as well as in infection-naïve vaccinated individuals. Here, we report that individuals from the convalescent vaccinated (hybrid immunity) group have the highest concentrations of spike protein-specific antibodies at 6 months after vaccination. As compared with infection-naïve vaccinated individuals, they also display increased frequencies of an atypical mucosa-targeted memory B cell subset. These individuals also exhibited enhanced TH1 polarization of their SARS-CoV-2 spike protein-specific follicular T helper cell pool. Together, our data suggest that prior SARS-CoV-2 infection increases the titers of SARS-CoV-2 spike protein-specific antibody responses elicited by subsequent vaccination and induces modifications in the composition of the spike protein-specific memory B cell pool that are compatible with enhanced functional protection at mucosal sites.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies , Vaccination , Antibodies, Viral , Antibodies, Neutralizing
4.
J Tissue Eng ; 13: 20417314221122130, 2022.
Article in English | MEDLINE | ID: mdl-36093433

ABSTRACT

Kidney pathology is frequently reported in patients hospitalized with COVID-19, the pandemic disease caused by the Severe acute respiratory coronavirus 2 (SARS-CoV-2). However, due to a lack of suitable study models, the events occurring in the kidney during the earliest stages of infection remain unknown. We have developed hamster organotypic kidney cultures (OKCs) to study the early stages of direct renal infection. OKCs maintained key renal structures in their native three-dimensional arrangement. SARS-CoV-2 productively replicated in hamster OKCs, initially targeting endothelial cells and later disseminating into proximal tubules. We observed a delayed interferon response, markers of necroptosis and pyroptosis, and an early repression of pro-inflammatory cytokines transcription followed by a strong later upregulation. While it remains an open question whether an active replication of SARS-CoV-2 takes place in the kidneys of COVID-19 patients with AKI, our model provides new insights into the kinetics of SARS-CoV-2 kidney infection and can serve as a powerful tool for studying kidney infection by other pathogens and testing the renal toxicity of drugs.

5.
Sci Transl Med ; 14(636): eabl6141, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35103481

ABSTRACT

Transplant recipients, who receive therapeutic immunosuppression to prevent graft rejection, are characterized by high coronavirus disease 2019 (COVID-19)-related mortality and defective response to vaccines. We observed that previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but not the standard two-dose regimen of vaccination, provided protection against symptomatic COVID-19 in kidney transplant recipients. We therefore compared the cellular and humoral immune responses of these two groups of patients. Neutralizing anti-receptor-binding domain (RBD) immunoglobulin G (IgG) antibodies were identified as the primary correlate of protection for transplant recipients. Analysis of virus-specific B and T cell responses suggested that the generation of neutralizing anti-RBD IgG may have depended on cognate T-B cell interactions that took place in germinal center, potentially acting as a limiting checkpoint. High-dose mycophenolate mofetil, an immunosuppressive drug, was associated with fewer antigen-specific B and T follicular helper (TFH) cells after vaccination; this was not observed in patients recently infected with SARS-CoV-2. Last, we observed that, in two independent prospective cohorts, administration of a third dose of SARS-CoV-2 mRNA vaccine restored neutralizing titers of anti-RBD IgG in about 40% of individuals who had not previously responded to two doses of vaccine. Together, these findings suggest that a third dose of SARS-CoV-2 mRNA vaccine improves the RBD-specific responses of transplant patients treated with immunosuppressive drugs.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Prospective Studies , SARS-CoV-2 , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
6.
Am J Transplant ; 22(5): 1442-1450, 2022 05.
Article in English | MEDLINE | ID: mdl-35114060

ABSTRACT

Kidney transplant recipients (KTRs) have reduced ability to mount adequate antibody response after two doses of the COVID-19 mRNA vaccine. French health authorities have allowed a third booster dose (D3) for KTRs, but their response is heterogeneous and tools able to discriminate the responders are lacking. Anti-RBD IgG titers (chemiluminescence immunoassay), spike-specific cellular responses (IFN-γ-releasing assay, IGRA), and in vitro serum neutralization of the virus (the best available correlate of protection), were evaluated 7-14 days after the second dose (D2) of BNT162b2 vaccine in 93 KTRs. Among the 73 KTRs, whose serum did not neutralize SARS-CoV-2 in vitro after D2, 14 (19%) acquired this capacity after D3, and were considered as "responders." Exploratory univariate analysis identified short time from transplantation and high maintenance immunosuppression as detrimental factors for the response to D3. In addition, any of the presence of anti-RBD IgGs and/or positive IGRA after D2 was predictive of response to D3. By contrast, none of the KTRs with both a negative serology and IGRA responded to D3. In summary, routinely available bioassays performed after D2 allow identifying KTRs that will respond to a booster D3. These results pave the way for the personalization of vaccination strategy in KTRs.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
7.
Kidney Int ; 101(2): 390-402, 2022 02.
Article in English | MEDLINE | ID: mdl-34856313

ABSTRACT

The level of protection achieved by the standard two doses of COVID-19 mRNA vaccines in patients receiving maintenance hemodialysis (MHD) remains unclear. To study this we used the French Renal Epidemiology and Information Network (REIN) Registry to compare the incidence and severity of 1474 cases of COVID-19 diagnosed in patients receiving MHD after none, one or two doses of vaccine. Vaccination significantly reduce COVID-19 incidence and severity, but 11% of patients infected after two doses still died. Lack of vaccinal protection in patients naïve for SARS-CoV-2 could be due to defective Tfh response [38% of patients with negative spike-specific CD4+ T-cell interferon gamma release assay] and failure to generate viral neutralizing titers of anti-spike receptor binding domain (RBD) IgGs (63% of patients with titer at or under 997 BAU/ml, defining low/no responders) after two doses of vaccine. To improve protection, a third dose of vaccine was administered to 75 patients [57 low/no responders, 18 high responders after two doses] from the ROMANOV cohort that prospectively enrolled patients receiving MHD vaccinated with BNT162b2 (Pfizer). Tolerance to the third dose was excellent. High responders to two doses did not generate more anti-RBD IgGs after three doses but had more side effects. Importantly, 31 (54%) of low/no responders to two doses reached neutralizing titers of anti-RBD IgGs after three doses. A positive interferon gamma release assay and/or suboptimal titer of anti-RBD IgGs after two doses were the only predictive variables for response to three doses in multivariate analysis. Thus, the standard scheme of vaccination insufficiently protects patients receiving MHD. Anti-RBD IgG and specific CD4+ T-cell response after two doses can guide personalized administration of the third dose, which improves the humoral response of SARS-CoV-2-naïve patients receiving MHD.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Viral , Humans , Renal Dialysis/adverse effects , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
8.
Kidney Int ; 100(4): 928-936, 2021 10.
Article in English | MEDLINE | ID: mdl-34284044

ABSTRACT

Patients on maintenance hemodialysis (MHD), which are at high risk of infection by SARS-CoV-2 virus and death due to COVID-19, have been prioritized for vaccination. However, because they were excluded from pivotal studies and have weakened immune responses, it is not known whether these patients are protected after the "standard" two doses of mRNA vaccines. To answer this, anti-spike receptor binding domain (RBD) IgG and interferon gamma-producing CD4+ and CD8+ specific-T cells were measured in the circulation 10-14 days after the second injection of BNT162b2 vaccine in 106 patients receiving MHD (14 with history of COVID-19) and compared to 30 healthy volunteers (four with history of COVID-19). After vaccination, most (72/80, 90%) patients receiving MHD naïve for the virus generated at least one type of immune effector, but their response was weaker and less complete than that of healthy volunteers. In multivariate analysis, hemodialysis and immunosuppressive therapy were significantly associated with absence of both anti-RBD IgGs and anti-spike CD8+ T cells. In contrast, previous history of COVID-19 in patients receiving MHD correlated with the generation of both types of immune effectors anti-RBD IgG and anti-spike CD8+ T cells at levels similar to healthy volunteers. Patients receiving MHD naïve for SARS-Cov-2 generate mitigated immune responses after two doses of mRNA vaccine. Thus, the good response to vaccine of patients receiving MHD with a history of COVID-19 suggest that these patients may benefit from a third vaccine injection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Immunity, Cellular , RNA, Messenger , Renal Dialysis/adverse effects
9.
Cytometry A ; 99(11): 1079-1090, 2021 11.
Article in English | MEDLINE | ID: mdl-33866668

ABSTRACT

The analysis of immune cell signaling is critical for the understanding of the biology and pathology of the immune system, and thus a mandatory step for the development of efficient biomarkers and targeted therapies. Phosflow, which has progressively replaced the traditional western blot approach, relies on flow cytometry to analyze various signaling pathways at a single-cell level. This technique however suffers a lack of sensitivity largely due to the low signal/noise ratio that characterizes cell signaling analysis. In this study, we describe a new technique, which combines the use of biofunctionalized nanospheres (i.e., synthetic particulate antigens, SPAg) to stimulate the immune cells in suspension and imaging flow cytometry to identify homogenously-stimulated cells and quantify the activity of the chosen signaling pathway in selected subcellular regions of interest. Using BCR signaling as model, we demonstrate that SIBERIAN (SPAg-assIsted suB-cEllulaR sIgnaling ANalysis) allows assessing immune cell signaling with unprecedented sensitivity and specificity.


Subject(s)
Nanospheres , Flow Cytometry , Phosphorylation , Signal Transduction
10.
Toxins (Basel) ; 12(5)2020 05 06.
Article in English | MEDLINE | ID: mdl-32384617

ABSTRACT

Regardless of the primary disease responsible for kidney failure, patients suffering from chronic kidney disease (CKD) have in common multiple impairments of both the innate and adaptive immune systems, the pathophysiology of which has long remained enigmatic. CKD-associated immune dysfunction includes chronic low-grade activation of monocytes and neutrophils, which induces endothelial damage and increases cardiovascular risk. Although innate immune effectors are activated during CKD, their anti-bacterial capacity is impaired, leading to increased susceptibility to extracellular bacterial infections. Finally, CKD patients are also characterized by profound alterations of cellular and humoral adaptive immune responses, which account for an increased risk for malignancies and viral infections. This review summarizes the recent emerging data that link the pathophysiology of CKD-associated immune dysfunctions with the accumulation of microbiota-derived metabolites, including indoxyl sulfate and p-cresyl sulfate, the two best characterized protein-bound uremic retention solutes.


Subject(s)
Cresols/blood , Immune System/immunology , Indican/blood , Kidney/immunology , Renal Insufficiency, Chronic/immunology , Sulfuric Acid Esters/blood , Uremia/immunology , Animals , Humans , Immune System/metabolism , Immune System/physiopathology , Immunity, Cellular , Immunity, Humoral , Immunity, Innate , Kidney/metabolism , Kidney/physiopathology , Protein Binding , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/physiopathology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Uremia/blood , Uremia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...