Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 56(23): 6611-6621, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-29047953

ABSTRACT

Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 keV. This technique allows the evaluation of the optical response in these ultraviolet spectral regions of a thin layer of material, and the analysis is straightforward. It is performed within the dielectric response theory by means of the QUEELS-ε(k, ω)-REELS software developed by Tougaard and Yubero [Surf. Interface Anal.36, 824 (2004)SIANDQ0142-242110.1002/(ISSN)1096-9918]. The method consists basically in the fitting of experimentally determined single-scattering electron energy loss cross sections with a parametric energy loss function of the corresponding material, to the one calculated within a dielectric response formalism. The obtained refractive index and extinction coefficients, as well as the identified electronic transitions are compared, when available, with previously published results.

2.
Sci Rep ; 7(1): 5924, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28725039

ABSTRACT

Plasma treatment is recognized as a suitable technology to improve germination efficiency of numerous seeds. In this work Quinoa seeds have been subjected to air plasma treatments both at atmospheric and low pressure and improvements found in germination rate and percentage of success. Seed water uptake by exposure to water vapor, although slightly greater for plasma treated seeds, did not justify the observed germination improvement. To identify other possible factors contributing to germination, the chemical changes experienced by outer parts of the seed upon plasma exposure have been investigated by X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM-EDX). XPS revealed that the outer layers of the Quinoa plasma treated seeds were highly oxidized and appeared enriched in potassium ions and adsorbed nitrate species. Simultaneously, SEM-EDX showed that the enrichment in potassium and other mineral elements extended to the seed pericarp and closer zones. The disappearance from the surface of both potassium ions and nitrate species upon exposure of the plasma treated seeds to water vapor is proposed as a factor favoring germination. The use of XPS to study chemical changes at seed surfaces induced by plasma treatments is deemed very important to unravel the mechanisms contributing to germination improvement.


Subject(s)
Chenopodium quinoa/chemistry , Germination/drug effects , Plasma Gases/pharmacology , Seeds/chemistry , Photoelectron Spectroscopy , Seeds/ultrastructure , Surface Properties , Water/chemistry
3.
Nanotechnology ; 28(17): 175709, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28278132

ABSTRACT

The aging of supported Ag nanostructures upon storage in ambient conditions (air and room temperature) for 20 months has been studied. The samples are produced on glass substrates by pulsed laser deposition (PLD); first a 15 nm thick buffer layer of amorphous aluminum oxide (a-Al2O3) is deposited, followed by PLD of Ag. The amount of deposited Ag ranges from that leading to a discontinuous layer up to an almost-percolated layer with a thickness of <6 nm. Some regions of the as-grown silver layers are converted, by laser induced dewetting, into round isolated nanoparticles (NPs) with diameters of up to ∼25 nm. The plasmonic, structural and chemical properties of both as-grown and laser exposed regions upon aging have been followed using extinction spectroscopy, scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. The results show that the discontinuous as-grown regions are optically and chemically unstable and that the metal becomes oxidized faster, the smaller the amount of Ag. The corrosion leads to the formation of nitrile species due to the reaction between NO x species from the atmosphere adsorbed at the surface of Ag, and hydrocarbons adsorbed in defects at the surface of the a-Al2O3 layer during the deposition of the Ag nanostructures by PLD that migrate to the surface of the metal with time. The nitrile formation thus results in the main oxidation mechanism and inhibits almost completely the formation of sulphate/sulphide. Finally, the optical changes upon aging offer an easy-to-use tool for following the aging process. They are dominated by an enhanced absorption in the UV side of the spectrum and a blue-shift of the surface plasmon resonance that are, respectively, related to the formation of a dielectric overlayer on the Ag nanostructure and changes in the dimensions/features of the nanostructures, both due to the oxidation process.

4.
ACS Appl Mater Interfaces ; 8(37): 24880-6, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27556592

ABSTRACT

This paper presents a new method for the fabrication of metal-like decorative layers on glazed ceramic tiles. It consists of the laser treatment of Cu thin films prepared by electron-beam evaporation at glancing angles. A thin film of discontinuous Cu nanoparticles was electron-beam-evaporated in an oblique angle configuration onto ceramic tiles and an ample palette of colors obtained by laser treatment both in air and in vacuum. Scanning electron microscopy along with UV-vis-near-IR spectroscopy and time-of-flight secondary ion mass spectrometry analysis were used to characterize the differently colored layers. On the basis of these analyses, color development has been accounted for by a simple model considering surface melting phenomena and different microstructural and chemical transformations of the outmost surface layers of the samples.

5.
Nanotechnology ; 24(36): 365702, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-23942355

ABSTRACT

Pairs of samples containing Ag nanoparticles (NPs) of different dimensions have been produced under the same conditions but on different substrates, namely standard glass slides and a thin layer of amorphous aluminum oxide (a-Al2O3) on-glass. Upon storage in ambient conditions (air and room temperature) the color of samples changed and a blue-shift and damping of the surface plasmon resonance was observed. The changes are weaker for the samples on-glass and tend to saturate after 12 months. In contrast, the changes for the samples on a-Al2O3 appear to be still progressing after 25 months. While x-ray photoelectron spectroscopy shows a slight sulfurization and negligible oxidation of the Ag for the on-glass samples upon 25 months aging, it shows that Ag is strongly oxidized for the on a-Al2O3 samples and sulfurization is negligible. Both optical and chemical results are consistent with the production of a shell at the expense of a reduction of the metal core dimensions, the latter being responsible for the blue-shift and related to the small (<10 nm initial diameter) of the NPs. The enhanced reactivity of the Ag NPs on the a-Al2O3 supports goes along with specific morphological changes of the Ag NPs and the observation of nitrogen.

6.
Anal Bioanal Chem ; 396(8): 2757-68, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19957075

ABSTRACT

The measured peak shape and intensity of the photoemitted signal in X-ray photoelectron spectroscopy (XPS) experiments (elastic and inelastic parts included) are strongly correlated, through electron-transport theory, with the depth distribution of photoelectron emitters within the analyzed surface. This is the basis of so-called XPS peak-shape analysis (also known as the Tougaard method) for non-destructive determination of compositional in-depth (up to 6-8 nm) profiles. This review describes the theoretical basis and reliability of this procedure for quantifying amounts and distributions of material within a surface. The possibilities of this kind of analysis are illustrated with several case examples related to the study of the initial steps of thin-film growth and the modifications induced in polymer surfaces after plasma treatments.

7.
Nanotechnology ; 19(39): 395601, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-21832597

ABSTRACT

A novel mechanism based on aliovalent doping, allowing fine tuning of the nanostructure and surface topography of solution-derived ceria films, is reported. While under reducing atmospheric conditions, non-doped ceria films are inherently polycrystalline due to an interstitial amorphous Ce(2)C(3) phase that inhibits grain growth, a high quality epitaxial film can be achieved simply by doping with Gd(3+) cations. Gd(3+) [Formula: see text] Ce(4+) substitutions within the lattice are accompanied by charge-compensating oxygen vacancies throughout the volume of the crystallites acting as an efficient vehicle to reduce the barrier for grain boundary motion caused by interstitial Ce(2)C(3). In this way, the original nanostructure is self-purified by pushing the amorphous Ce(2)C(3) phase towards the free surface of the film. Once a full epitaxial cube-on-cube oriented ceria film is obtained, its surface morphology is dictated by the interplay between faceting on low energy {110} and/or {111} pyramidal planes and truncation of those pyramids by (001) ones. The development of the latter requires the suppression of their polar character which is thought to be achieved by charge compensation between the dopand and oxygen along [Formula: see text] directions.

8.
J Phys Chem B ; 109(16): 7758-65, 2005 Apr 28.
Article in English | MEDLINE | ID: mdl-16851901

ABSTRACT

This paper reports an analysis of the changes in the photoemission parameters of copper in small particles of copper oxides deposited on silicon dioxide. This study is of relevance for investigations in the fields of heterogeneous catalysis and coordination chemistry. Copper oxides (Cu2O and CuO) have been deposited on the surface of a flat SiO2 substrate by evaporation of copper and subsequent oxidization of the deposited particles. XPS has been used to analyze the chemical and coordination state of copper. Large variations in the Cu 2p(3/2) binding energy (BE) and Auger parameter (alpha') have been found as a function of the type and amount of deposited copper oxide. The differences in BE calculated from the values of the lowest amount of deposited material and those of the bulk compounds were -0.4 eV (Cu2O) and -1.9 eV (CuO), while those in alpha' amounted to 2.9 (Cu2O) and 1.6 eV (CuO). The observed changes have been described in terms of the chemical state vector (CSV) concept in a Wagner plot and rationalized by considering the characteristics of bonding and electronic interactions that occur at a given oxide/oxide interface. These interactions have been modeled by means of quantum mechanical calculations with cluster models simulating the Cu-O-Si bonding at the interface. The effect of the polarization of the surrounding media around the copper cations has been also estimated for both the dispersed clusters supported on the SiO2 substrate and for the copper oxide materials in bulk form. A change in the values of alpha' and BE of copper (ie., delta alpha' = 1.1 eV, deltaBE = 0.1 eV) upon adsorption on the Cu+ species of Cu2O moieties dispersed on SiO2 of a phenyl-acetylene molecule illustrates the use of XPS to study the formation of cation-ligand complexes in heterogeneous systems. A detailed description of the bonding interactions of these coordinated Cu+ species in terms of initial and final state effects of the photoemission process has been also carried out by means of quantum mechanical calculations and cluster models.

SELECTION OF CITATIONS
SEARCH DETAIL
...