Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376332

ABSTRACT

Bio-based polymers, with any of their constituents based on nonrenewable sources, can answer the demands of society and regulations regarding minimizing the environmental impact. The more similar such biocomposites are to oil-based composites, the easier the transition, especially for companies that do not like the uncertainty. A BioPE matrix, with a structure similar to that of a high-density polyethylene (HDPE), was used to obtain abaca-fiber-reinforced composites. The tensile properties of these composites are displayed and compared with commercial glass-fiber-reinforced HDPE. Since the strength of the interface between the reinforcements and the matrix is responsible for the exploitation of the strengthening abilities of the reinforcements, several micromechanical models were used to obtain an estimation of the strength of the interface and the intrinsic tensile strength of the reinforcements. Biocomposites require the use of a coupling agent to strengthen their interface, and once an 8 wt.% of such coupling agent was added to the composites, these materials returned tensile properties in line with commercial glass-fiber-reinforced HDPE composites.

2.
Polymers (Basel) ; 15(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37177167

ABSTRACT

FDM (Fused Deposition Modeling) is one of the most used and industrially applied additive manufacturing processes due to its fast prototyping and manufacturing, simplicity, and low cost of the equipment. However, the mechanical properties of the printed products have a large dependence on orientation and interface strength between layers which is mainly related to the thermal union obtained. This thermal union has a large dependence on the melting and cooling down process. Additionally, the materials used must be extruded in a continuous filament before their use, which limits the materials used. However, a pellet extruder could be used directly in the printing equipment, avoiding filament extrusion. In this work, specimens of PLA (Poly(lactic acid)) with different bead orientations have been produced via filament or pellet extrusion to compare the effect of the different melting processes in the manufacturing methodology. Pellet extruded specimens showed higher infill and mechanical properties. These results were related to better adhesion between layers due to the longer melting and cooling process. The result was confirmed using DSC and XRD techniques, where a higher crystallinity was observed. A bicomponent specimen (50% pellet-50% filament) was prepared and tested, showing higher mechanical results than expected, which was, again, due to the better thermal union obtained in the pellet extruder.

3.
Polymers (Basel) ; 15(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37111958

ABSTRACT

In the original article [...].

4.
Polymers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904336

ABSTRACT

The use of bio-based matrices together with natural fibers as reinforcement is a strategy for obtaining materials with competitive mechanical properties, costs, and environmental impacts. However, bio-based matrices, unknown by the industry, can be a market entry barrier. The use of bio-polyethylene, which has properties similar to polyethylene, can overcome that barrier. In this study, composites reinforced with abaca fibers used as reinforcement for bio-polyethylene and high density polyethylene are prepared and tensile tested. A micromechanics analysis is deployed to measure the contributions of the matrices and reinforcements and to measure the evolution of these contributions regarding AF content and matrix nature. The results show that the mechanical properties of the composites with bio-polyethylene as a matrix were slightly higher than those of the composites with polyethylene as a matrix. It was also found that the contribution of the fibers to the Young's moduli of the composites was susceptible to the percentage of reinforcement and the nature of the matrices. The results show that it is possible to obtain fully bio-based composites with mechanical properties similar to those of partially bio-based polyolefin or even some forms of glass fiber-reinforced polyolefin.

5.
Polymers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201704

ABSTRACT

Biocomposites from poly-(lactic acid) (PLA) and jute strands were prepared, and their flexural strength was analyzed. Jute strands were submitted to a progressive delignification process and the resulting morphology, composition, and crystallinity index were evaluated. Then, PLA biocomposites comprising 30 wt% of jute strands were produced and characterized under flexural conditions. The delignification processes decreased the lignin content and progressively increased the cellulose content. All this resulted in an enhancement of the composite flexural strength. A modified rule of mixtures, and the relation between tensile and flexural properties were used to determine the intrinsic flexural strength (of the jute strands) and their correlation with their physic-chemical characteristics. Equations correlating the intrinsic flexural strength with the crystallinity index, the cellulose content, and the microfibril angle were proposed. These equations show the impact of these properties over the intrinsic properties of the fibers and can help researchers to select appropriate fibers to obtain accurate properties for the composites. Jute strands show their value as reinforcement by increasing the flexural strength of the matrix by 70% and being less expensive and more environmentally friendly than mineral reinforcements. Together with the profitability and the environmental advantages, the mechanical results suggest that these PLA biocomposites are suitable for specific products of different market sectors.

6.
Polymers (Basel) ; 14(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36559780

ABSTRACT

In this study, tensile properties of abaca-reinforced HDPE and BioPE composites have been researched. The strength of the interface between the matrix and the reinforcement of a composite material noticeably impacts its mechanical properties. Thus, the strength of the interface between the reinforcements and the matrices has been studied using micromechanics models. Natural fibers are hydrophilic and the matrices are hydrophobic, resulting in weak interfaces. In the study, a coupling agent based on polyethylene functionalised with maleic acid was used, to increase the strength of the interface. The results show that 8 wt% coupling agent contents noticeably increased the tensile strength of the composites and the interface. Tensile properties obtained for HDPE and BioPE-based coupled composites were statistically similar or better for BioPE-based materials. The use of bio-based matrices increases the possibility of decreasing the environmental impact of the materials, obtaining fully bio-based composites. The article shows the ability of fully bio-based composites to replace others using oil-based matrices.

7.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616497

ABSTRACT

The compatibility between poly(lactic acid) (PLA) and natural fibers to develop bio-sourced, recyclable, and biodegradable composites remains a commonplace issue. This work highlights that, at least in the case of hemp, pulping and bleaching towards delignified short fibers attained remarkable improvements over untreated hemp strands. This approach differs from usual proposals of chemically modifying hydroxyl groups. Soda-bleached hemp fibers (SBHFs) granted a relatively large bonding surface area and a satisfactory quality of the interphase, even in the absence of any dispersant or compatibilizer. To attain satisfactory dispersion, the matrix and the fibers were subjected to kinetic mixing and to a moderately intensified extrusion process. Then, dog-bone specimens were prepared by injection molding. Up to a fiber content of 30 wt.%, the tensile strength increased linearly with the volume fraction of the dispersed phase. It reached a maximum value of 77.8 MPa, signifying a relative enhancement of about 52%. In comparison, the tensile strength for PLA/hemp strands was 55.7 MPa. Thence, based on the modified rule of mixtures and the Kelly & Tyson modified equation, we analyzed this performance at the level of the constituent materials. The interfacial shear strength (over 28 MPa) and other micromechanical parameters were computed. Overall, this biocomposite was found to outperform a polypropylene/sized glass fiber composite (without coupling agent) in terms of tensile strength, while fulfilling the principles of green chemistry.

8.
Polymers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833245

ABSTRACT

In this study, Young's modulus of henequen fibers was estimated through micromechanical modeling of polypropylene (PP)-based composites, and further corroborated through a single filament tensile test after applying a correction method. PP and henequen strands, chopped to 1 mm length, were mixed in the presence of maleic anhydride grafted polypropylene (MAPP). A 4 wt.% of MAPP showed an effective enhancement of the interfacial adhesion. The composites were mold-injected into dog-bone specimens and tensile tested. The Young's modulus of the composites increased steadily and linearly up to 50 wt.% of fiber content from 1.5 to 6.4 GPa, corresponding to a 327% increase. Certainly, henequen fibers showed a comparable stiffening capacity of PP composites than glass fibers. The intrinsic Young's modulus of the fibers was predicted through well established models such as Hirsch or Tsai-Pagano, yielding average values of 30.5 and 34.6 GPa, respectively. The single filament test performed to henequen strands resulted in values between 16 and 27 GPa depending on the gauge length, although, after applying a correction method, a Young's modulus of 33.3 GPa was obtained. Overall, the present work presents the great potential for henequen fibers as PP reinforcement. Moreover, relationships between micromechanics models and filament testing to estimate Young's modulus of the fibers were explored.

9.
Polymers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34641140

ABSTRACT

Noise pollution has been identified as a cause of a broad spectrum of diseases, motivating researchers to identify building materials capable of attenuating this pollution. The most common solution is the use of gypsum boards, which show a good response for low frequencies but have a poorer response for high frequencies. In addition, due to environmental concerns associated with buildings, the use of materials that minimize environmental impacts must be favored. In this research, two biopolymers, a poly(lactic) acid and a bio-polyethylene, were filled with two typologies of calcium carbonate, and their soundproofing properties were tested using impedance tubes. In addition, the morphology of the fillers was characterized, and here we discuss its impact on the mechanical properties of the composites. The results showed that the incorporation of calcium carbonate into bio-based thermoplastic materials can represent a strong alternative to gypsum, because their mechanical properties and sound barrier performance are superior. In addition, the inclusion of mineral fillers in thermoplastic materials has a positive impact on production costs, in addition to preserving the advantages of thermoplastics in terms of processing and recycling. Although the use of carbonate calcium decreases the mechanical properties of the materials, it enables the production of materials with insulation that is four-fold higher than that of gypsum. This demonstrates the potential of these materials as building lightweight solutions.

10.
Materials (Basel) ; 14(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500877

ABSTRACT

The textile sector produces yearly great quantities of cotton byproducts, and the major part is either incinerated or landfilled, resulting in serious environmental risks. The use of such byproducts in the composite sector presents an attractive opportunity to valorize the residue, reduce its environmental impact, and decrease the pressure on natural and synthetic resources. In this work, composite materials based on polypropylene and dyed cotton byproducts from the textile industry were manufactured. The competitiveness of the resulting composites was evaluated from the analyses, at macro and micro scales, of the flexural modulus. It was observed that the presence of dyes in cotton fibers, also a byproduct from the production of denim items, notably favored the dispersion of the phases in comparison with other cellulose-rich fibers. Further, the presence of a coupling agent, in this case, maleic anhydride grafted polypropylene, enhanced the interfacial adhesion of the composite. As a result, the flexural modulus of the composite at 50 wt.% of cotton fibers enhanced by 272% the modulus of the matrix. From the micromechanics analysis, using the Hirsch model, the intrinsic flexural modulus of cotton fibers was set at 20.9 GPa. Other relevant micromechanics factors were studied to evaluate the contribution and efficiency of the fibers to the flexural modulus of the composite. Overall, the work sheds light on the potential of cotton industry byproducts to contribute to a circular economy.

11.
Materials (Basel) ; 14(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067687

ABSTRACT

The use of natural fibers as reinforcement for polymer-based composites has been attracting the interest of the scientific community for a long time [...].

12.
Polymers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670806

ABSTRACT

Biocomposites are composite materials where at least the matrix or the reinforcement phases are obtained from natural and renewable resources. Natural fibers for composite preparation can be obtained from annual plants, wood, recycled products, or agroforestry waste. The present work selected abaca strands, spruce fibers, recycled fibers from old newspaper, and barley fibers as raw materials to produce biocomposites, in combination with a biobased polyethylene. One very important feature in material science and for industrial applications is knowing how a material will deform under load, and this characteristic is represented by Young's modulus. Therefore, in this work, the stiffness and deformation of the biocomposites were determined and evaluated using macromechanics and micromechanics analyses. Results were compared to those of conventional synthetic composites reinforced with glass fibers. From the micromechanics analysis, the intrinsic Young modulus of the reinforcements was obtained, as well as other micromechanics parameters such as the modulus efficiency and the length and orientation factors. Abaca strands accounted for the highest intrinsic modulus. One interesting outcome was that recycled fibers exhibited similar Young's moduli to wood fibers. Finally, agroforestry waste demonstrated the lowest stiffening potential. The study explores the opportunity of using different natural fibers when specific properties or applications are desired.

13.
Polymers (Basel) ; 12(10)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32993045

ABSTRACT

Agroforestry creates value but also a huge amount of waste outside its value chain. Tree pruning is an example of such a low value waste, that is typically discarded or incinerated in the fields or used to recover energy. Nonetheless, tree prunings are rich in wood fibers that can be used as polymer reinforcement. Although there are some bio-based polymers, the majority of industries use oil-based ones. The election of the materials is usually based on a ratio between properties and cost. Bio-based polymers are more expensive than oil-based ones. This work shows how a bio-polyethylene matrix can be reinforced with fibers from orange tree prunings to obtain materials with notable tensile properties. These bio-based materials can show a balanced cost due to the use of a cheap reinforcement with an expensive matrix. The matrix used showed a tensile strength of 18.65 MPa, which reached 42.54 MPa after the addition of 50 wt.% of reinforcement. The obtained values allow the use of the studied composite to replace polypropylene and some of its composites under tensile loads.

14.
Molecules ; 25(9)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397611

ABSTRACT

Awareness on deforestation, forest degradation, and its impact on biodiversity and global warming, is giving rise to the use of alternative fiber sources in replacement of wood feedstock for some applications such as composite materials and energy production. In this category, barley straw is an important agricultural crop, due to its abundance and availability. In the current investigation, the residue was submitted to thermomechanical process for fiber extraction and individualization. The high content of holocellulose combined with their relatively high aspect ratio inspires the potential use of these fibers as reinforcement in plastic composites. Therefore, fully biobased composites were fabricated using barley fibers and a biobased polyethylene (BioPE) as polymer matrix. BioPE is completely biobased and 100% recyclable. As for material performance, the flexural properties of the materials were studied. A good dispersion of the reinforcement inside the plastic was achieved contributing to the elevate increments in the flexural strength. At a 45 wt.% of reinforcement, an increment in the flexural strength of about 147% was attained. The mean contribution of the fibers to the flexural strength was assessed by means of a fiber flexural strength factor, reaching a value of 91.4. The micromechanical analysis allowed the prediction of the intrinsic flexural strength of the fibers, arriving up to around 700 MPa, and coupling factors between 0.18 and 0.19, which are in line with other natural fiber composites. Overall, the investigation brightness on the potential use of barley straw residues as reinforcement in fully biobased polymer composites.


Subject(s)
Composite Resins/chemistry , Flexural Strength , Hordeum/chemistry , Plastics/chemistry , Polyethylene/chemistry , Cellulose/chemistry , Composite Resins/analysis , Feasibility Studies , Lignin/chemistry , Manufactured Materials/standards , Materials Testing , Polysaccharides/chemistry , Stress, Mechanical , Surface Properties
15.
Int J Biol Macromol ; 155: 81-90, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32198042

ABSTRACT

Agricultural wastes are an alternative to the use of wood in plastic composites, thanks to their abundance, easy availability and other environmental and economic advantages. Agricultural wastes can be processed to obtain lignocellulosic fibers of different compositions that will allow better performance of their composites and the final desired residues' valorization. In this context, the current investigation aims at the management of corn stover wastes to be applied as reinforcement of polypropylene (PP). Four types of lignocellulosic fibers were obtained by submitting the wastes to mechanical, thermomechanical, semi-chemical or chemical processes. Corn fibers were characterized in terms of chemical composition, morphology and mechanical properties. In addition, PP was reinforced with corn fibers and the composites' stiffness evaluated. An assessment of the influence of the fiber composition on the mechanical performance of the composites is conducted. It is observed the key role of lignin content on the intrinsic modulus of the reinforcing fibers, which directly affected the final stiffness of composites. The best performance was achieved for an optimal kappa number between 40 and 50, corresponding to the semi-chemical fibers. The intrinsic modulus of the fibers, as well as the efficiency factor, length and orientation factors in composites were determined via micromechanical models.


Subject(s)
Biodegradable Plastics/chemistry , Lignin , Wood/chemistry , Zea mays/chemistry , Lignin/chemical synthesis , Lignin/chemistry , Materials Testing , Polypropylenes/chemistry , Tensile Strength
16.
Materials (Basel) ; 13(5)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121197

ABSTRACT

Natural fiber-reinforced thermoplastic composites can be an alternative to mineral fiber-based composites, especially when economic and environment concerns are included under the material selection criteria. In recent years, the literature has shown how lignocellulosic fiber-reinforced composites can be used for a variety of applications. Nonetheless, the impact strength and the water uptake behavior of such materials have been seen as drawbacks. In this work, the impact strength and the water uptake of composites made of polypropylene reinforced with fibers from recycled newspaper have been researched. The results show how the impact strength decreases with the percentage of reinforcement in a similar manner to that of glass fiber-reinforced polypropylene composites as a result of adding a fragile phase to the material. It was found that the water uptake increased with the increasing percentages of lignocellulosic fibers due to the hydrophilic nature of such reinforcements. The diffusion behavior was found to be Fickian. A maleic anhydride was added as a coupling agent in order to increase the strength of the interface between the matrix and the reinforcements. It was found that the presence of such a coupling agent increased the impact strength of the composites and decreased the water uptake. Impact strengths of 21.3 kJ/m3 were obtained for a coupled composite with 30 wt % reinforcement contents, which is a value higher than that obtained for glass fiber-based materials. The obtained composites reinforced with recycled fibers showed competitive impact strength and water uptake behaviors in comparison with materials reinforced with raw lignocellulosic fibers. The article increases the knowledge on newspaper fiber-reinforced polyolefin composite properties, showing the competitiveness of waste-based materials.

17.
Materials (Basel) ; 13(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102315

ABSTRACT

The strength of the interphase between the reinforcements and the matrix has a major role in the mechanical properties of natural fiber reinforced polyolefin composites. The creation of strong interphases is hindered by the hydrophobic and hydrophilic natures of the matrix and the reinforcements, respectively. Adding coupling agents has been a common strategy to solve this problem. Nonetheless, a correct dosage of such coupling agents is important to, on the one hand guarantee strong interphases and high tensile strengths, and on the other hand ensure a full exploitation of the strengthening capabilities of the reinforcements. The paper proposes using topographic profile techniques to represent the effect of reinforcement and coupling agent contents of the strength of the interphase and the exploitation of the reinforcements. This representation allowed identifying the areas that are more or less sensitive to coupling agent content. The research also helped by finding that an excess of coupling agent had less impact than a lack of this component.

18.
Materials (Basel) ; 12(24)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842419

ABSTRACT

The cultivation of cereals like rye, barley, oats, or wheat generates large quantities of agroforestry residues, which reaches values of around 2066 million metric tons/year. Barley straw alone represents 53%. In this work, barley straw is recommended for the production of composite materials in order to add value to this agricultural waste. First of all, thermomechanical (TMP) fibers from barley straw are produced and later used to reinforce bio-polyethylene (BioPE) matrix. TMP barley fibers were chemically and morphologically characterized. Later, composites with optimal amounts of coupling agent and fiber content ranging from 15 to 45 wt % were prepared. The mechanical results showed the strengthening and stiffening capacity of the TMP barley fibers. Finally, a micromechanical analysis is applied to evaluate the quality of the interface and to distinguish how the interface and the fiber morphology contributes to the final properties of these composite materials.

19.
Materials (Basel) ; 12(24)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842484

ABSTRACT

The automotive industry is under a growing volume of regulations regarding environmental impact and component recycling. Nowadays, glass fiber-based composites are commodities in the automotive industry, but show limitations when recycled. Thus, attention is being devoted to alternative reinforcements like natural fibers. Curauá (Curacao, Ananas erectifolius) is reported in the literature as a promising source of natural fiber prone to be used as composite reinforcement. Nonetheless, one important challenge is to obtain properly dispersed materials, especially when the percentages of reinforcements are higher than 30 wt %. In this work, composite materials with curauá fiber contents ranging from 20 wt % to 50 wt % showed a linear positive evolution of its tensile strength and Young's modulus against reinforcement content. This is an indication of good reinforcement dispersion and of favorable stress transfer at the fiber-matrix interphase. A car door handle was used as a test case to assess the suitability of curauá-based composites to replace glass fiber-reinforced composites. The mechanical analysis and a preliminary lifecycle analysis are performed to prove such ability.

20.
Polymers (Basel) ; 11(10)2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640226

ABSTRACT

The stiffness of a composite material is mainly affected by the nature of its phases and its contents, the dispersion of the reinforcement, as well as the morphology and mean orientation of such reinforcement. In this paper, recovered dyed cotton fibers from textile industry were used as reinforcement for a polypropylene matrix. The specific dye seems to decrease the hydrophilicity of the fibers and to increase its chemical compatibility with the matrix. The results showed a linear evolution of the Young's moduli of the composites against the reinforcement contents, although the slope of the regression line was found to be lower than that for other natural strand reinforced polypropylene composites. This was blamed on a growing difficulty to disperse the reinforcements when its content increased. The micromechanics analysis returned a value for the intrinsic Young's modulus of the cotton fibers that doubled previously published values. The use of two different micromechanics models allowed evaluating the impact of the morphology of the fibers on the Young's modulus of a composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...