Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 246: 115003, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36493617

ABSTRACT

Since the identification of human choline kinase as a protein target against cancer progression, many compounds have been designed to inhibit its function and reduce the biosynthesis of phosphatidylcholine. Herein, we propose a series of bioisosteric inhibitors that are based on the introduction of sulphur and feature improved activity and lipophilic/hydrophilic balance. The evaluation of the inhibitory and of the antiproliferative properties of the PL (dithioethane) and FP (disulphide) libraries led to the identification of PL 48, PL 55 and PL 69 as the most active compounds of the series. Docking analysis using FLAP suggests that for hits to leads, binding mostly involves an interaction with the Mg2+ cofactor, or its destabilization. The most active compounds of the two series are capable of inducing apoptosis following the mitochondrial pathway and to significantly reduce the expression of anti-apoptotic proteins such as the Mcl-1. The fluorescence properties of the compounds of the PL library allowed the tracking of their mode of action, while PAINS (Pan Assays Interference Structures) filtration databases suggest the lack of any unspecific biological response.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Choline/metabolism , Choline/pharmacology , Choline Kinase , Cell Proliferation , Antineoplastic Agents/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology
2.
RSC Chem Biol ; 3(10): 1251-1259, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36320886

ABSTRACT

We report a platform combining multicomponent reaction synthesis and automated cell-based screening to develop biocompatible NIR-BODIPY fluorophores. From a library of over 60 fluorophores, we optimised compound NIRBD-62c as a multimodal probe with suitable properties for STED super-resolution and fluorescence lifetime imaging. Furthermore, we employed NIRBD-62c for imaging trafficking inside cells and to examine how pharmacological inhibitors can alter the vesicular traffic between intracellular compartments and the plasma membrane.

3.
ACS Sens ; 7(1): 322-330, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35034437

ABSTRACT

The small molecule 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-carboxylic acid (2b) behaves as a reactive non-fluorescent Michael acceptor, which after reaction with thiols becomes fluorescent, and an efficient Eu3+ antenna, after self-assembling with this cation in water. This behavior makes 2b a highly selective GSH biosensor, which has demonstrated high potential for studies in murine and human cells of the immune system (CD4+ T, CD8+ T, and B cells) using flow cytometry. GSH can be monitored by the fluorescence of the product of addition to 2b (445 nm) or by the luminescence of Eu3+ (592 nm). 2b was able to capture baseline differences in GSH intracellular levels among murine and human CD4+ T, CD8+ T, and B cells. We also successfully used 2b to monitor intracellular changes in GSH associated with the metabolic variations governing the induction of CD4+ naïve T cells into regulatory T cells (TREG).


Subject(s)
Biosensing Techniques , Lanthanoid Series Elements , Animals , Flow Cytometry , Glutathione , Humans , Luminescence , Mice
4.
ACS Sens ; 6(7): 2563-2573, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34148347

ABSTRACT

A new chloride-sensitive red fluorescent protein derived from Entacmaea quadricolor is described. We found that mBeRFP exhibited moderate sensitivity to chloride and, via site-directed mutagenesis (S94V and R205Y), we increased the chloride affinity by more than an order of magnitude (kd = 106 ± 6 mM) at physiological pH. In addition, cis-trans isomerization of the chromophore produces a dual emission band with different chloride sensitivities, which allowed us to develop a ratiometric methodology to measure intracellular chloride concentrations.


Subject(s)
Chlorides , Hydrogen-Ion Concentration , Luminescent Proteins/genetics , Mutagenesis, Site-Directed , Red Fluorescent Protein
5.
Sensors (Basel) ; 19(22)2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31726748

ABSTRACT

Biological samples are a complex and heterogeneous matrix where different macromolecules with different physicochemical parameters cohabit in reduced spaces. The introduction of fluorophores into these samples, such as in the interior of cells, can produce changes in the fluorescence emission properties of these dyes, caused by the specific physicochemical properties of cells. This effect can be especially intense with solvatofluorochromic dyes, where changes in the polarity environment surrounding the dye can drastically change the fluorescence emission. In this article, we studied the photophysical behavior of a new dye and confirmed the aggregation-induced emission (AIE) phenomenon with different approaches, such as by using different solvent proportions, increasing the viscosity, forming micelles, and adding bovine serum albumin (BSA), through analysis of the absorption and steady-state and time-resolved fluorescence. Our results show the preferences of the dye for nonpolar media, exhibiting AIE under specific conditions through immobilization. Additionally, this approach offers the possibility of easily determining the critical micelle concentration (CMC). Finally, we studied the rate of spontaneous incorporation of the dye into cells by fluorescence lifetime imaging and observed the intracellular pattern produced by the AIE. Interestingly, different intracellular compartments present strong differences in fluorescence intensity and fluorescence lifetime. We used this difference to isolate different intracellular regions to selectively study these regions. Interestingly, the fluorescence lifetime shows a strong difference in different intracellular compartments, facilitating selective isolation for a detailed study of specific organelles.


Subject(s)
Spectrometry, Fluorescence/methods , Diagnostic Imaging/methods , Micelles , Serum Albumin, Bovine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...