Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(21)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34770840

ABSTRACT

The acid fruit of the "xoconostle" cactus belongs to the genus Opuntia family of cacti. It is used as a functional food for its bioactive compounds. Several studies reported that xoconostle fruits have a high amount of ascorbic acid, betalains, phenols, tannins, and flavonoids. These compounds confer antioxidant, antibacterial, anti-inflammatory, and hepatoprotective gastroprotective activity. Xoconostle fruit extracts were tested by in vitro assays where the digestion conditions were simulated to measure their stability. At the same time, the extracts were protected by encapsulation (microencapsulation, multiple emulsions, and nanoemulsions). Applications of encapsulated extracts were probed in various food matrices (edible films, meat products, dairy, and fruit coatings). The xoconostle is a natural source of nutraceutical compounds, and the use of this fruit in the new food could help improve consumers' health.


Subject(s)
Dietary Supplements , Fruit/chemistry , Functional Food , Opuntia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Chemical Fractionation/methods , Emulsions , Phytochemicals/chemistry , Plant Extracts/isolation & purification , Protective Agents/chemistry , Protective Agents/isolation & purification , Protective Agents/pharmacology
2.
Molecules ; 26(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918775

ABSTRACT

The objective of this study was to compare the effects of the incorporation of microcapsules or nanoemulsions with Opuntiaoligacantha on the quality of fresh cheese. Three treatments were established: Control, cheese with microcapsules (Micro), and cheese with nanoemulsion (Nano). The parameters evaluated were physicochemical (moisture, ash, fat, proteins, and pH), microbiological (mesophilic aerobic bacteria, mold-yeast, and total coliforms), functional (total phenols, flavonoids, and antioxidant capacity), and texture (hardness, elasticity, cohesion, and chewiness) during storage for 45 days at 4 °C. The results showed that adding microcapsules and nanoemulsion did not affect the physicochemical parameters of the cheese. Total coliforms decreased in all samples from the first days of storage (Control: 4.23 ± 0.12, Micro: 3.27 ± 0.02, and Nano: 2.68 ± 0.08 Log10 CFU), as well as aerobic mesophiles and mold-yeast counts. Regarding the functional properties, an increase in total phenols was observed in all treatments. The texture profile analysis showed that the addition of microcapsules and nanoemulsion influenced hardness (Control: 8.60 ± 1.12, Micro: 1.61 ± 0.31, and Nano: 3.27 ± 0.37 N). The antimicrobial effect was greater when nanoemulsions were added, while adding microcapsules influenced the antioxidant activity more positively.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Cheese/analysis , Drug Compounding , Nanoparticles/chemistry , Cheese/microbiology , Chemical Phenomena , Emulsions/chemistry , Flavonoids/analysis , Oils, Volatile/analysis , Particle Size
3.
Molecules ; 25(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751910

ABSTRACT

Over the past decade, consumers have demanded natural, completely biodegradable active packaging serving as food containers. Bioactive plant compounds can be added to biopolymer-based films to improve their functionality, as they not only act as barriers against oxidation, microbiological, and physical damage, they also offer functionality to the food they contain. A water-in-oil (W/O) nanoemulsion was produced by applying ultrasound to xoconostle extract and orange oil, and was incorporated into gelatine films in different proportions 1:0 (control), 1:0.10, 1:0.25, 1:0.50, 1:0.75, and 1:1 (gelatine:nanoemulsion). The nanoemulsions had an average size of 118.80 ± 5.50 nm with a Z-potential of -69.9 ± 9.93 mV. The presence of bioactive compounds such as phenols, flavonoids, and betalains in the films was evaluated. The 1:1 treatment showed the highest presence of bioactive compounds, 41.31 ± 3.71 mg of gallic acid equivalent per 100 g (GAE)/100g for phenols, 28.03 ± 3.25 mg of quercetin equivalent per 100 g (EQ)/100g flavonoids and 0.014 mg/g betalains. Radical inhibition reached 72.13% for 2,20-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and 82.23% for 1,1-diphenyl-2-picrylhydrazyl (DPPH). The color of the films was influenced by the incorporation of nanoemulsions, showing that it was significantly different (p < 0.05) to the control. Mechanical properties, such as tensile strength, Young's modulus, and percentage elongation, were affected by the incorporation of nanoemulsified bioactive compounds into gelatine films. The obtained films presented changes in strength and flexibility. These characteristics could be favorable as packaging material.


Subject(s)
Biodegradable Plastics/chemistry , Food Packaging , Gelatin/chemistry , Nanostructures/chemistry , Opuntia/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Betalains/analysis , Betalains/chemistry , Color , Emulsions/chemical synthesis , Emulsions/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Gelatin/chemical synthesis , Phenols/analysis , Phenols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...