Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Type of study
Language
Publication year range
1.
J Am Chem Soc ; 144(39): 17939-17954, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36130605

ABSTRACT

The kinetics of hydride transfer from Re(Rbpy)(CO)3H (bpy = 4,4'-R-2,2'-bipyridine; R = OMe, tBu, Me, H, Br, COOMe, CF3) to CO2 and seven different cationic N-heterocycles were determined. Additionally, the thermodynamic hydricities of complexes of the type Re(Rbpy)(CO)3H were established primarily using computational methods. Linear free-energy relationships (LFERs) derived by correlating thermodynamic and kinetic hydricities indicate that, in general, the rate of hydride transfer increases as the thermodynamic driving force for the reaction increases. Kinetic isotope effects range from inverse for hydride transfer reactions with a small driving force to normal for reactions with a large driving force. Hammett analysis indicates that hydride transfer reactions with greater thermodynamic driving force are less sensitive to changes in the electronic properties of the metal hydride, presumably because there is less buildup of charge in the increasingly early transition state. Bronsted α values were obtained for a range of hydride transfer reactions and along with DFT calculations suggest the reactions are concerted, which enables the use of Marcus theory to analyze hydride transfer reactions involving transition metal hydrides. It is notable, however, that even slight perturbations in the steric properties of the Re hydride or the hydride acceptor result in large deviations in the predicted rate of hydride transfer based on thermodynamic driving forces. This indicates that thermodynamic considerations alone cannot be used to predict the rate of hydride transfer, which has implications for catalyst design.


Subject(s)
Rhenium , 2,2'-Dipyridyl , Carbon Dioxide , Kinetics , Thermodynamics
2.
Chem Sci ; 13(8): 2391-2404, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35342547

ABSTRACT

The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type (RPBP)M(CH3) (RPBP = B(NCH2PR2)2C6H4 -; R = Cy or t Bu; M = Ni or Pd) to generate κ1-acetate complexes of the form (RPBP)M{OC(O)CH3} is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual RPBP ligand, which features a central boryl donor that exerts a strong trans-influence, and the identification of a new decomposition pathway that results in C-B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into (RPBP)M(CH3) is facile and occurs at room temperature because of the high trans-influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using ( t BuPBP)Pd(CH3). These studies demonstrate that the Dimroth-Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into ( t BuPBP)M(CH3) (M = Ni or Pd) proceeds via an SE2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization.

3.
Organometallics ; 40(14): 2332-2344, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-35719693

ABSTRACT

The synthesis of triarylmethanes via Pd-catalyzed Suzuki-Miyaura reactions between diarylmethyl 2,3,4,5,6-pentafluorobenzoates and aryl boronic acids is described. The system operates at mild conditions and has a broad substrate scope, including the coupling of diphenylmethanol derivatives that do not contain extended aromatic substituents. This is significant as these substrates, which result in the types of triarylmethane products that are prevalent in pharmaceuticals, have not previously been compatible with systems for diarylmethyl ester coupling. Further, the reaction can be performed stereospecifically to generate stereo-inverted products. On the basis of DFT calculations, it is proposed that the oxidative addition of the diarylmethyl 2,3,4,5,6-pentafluorobenzoate substrate occurs via an SN2 pathway, which results in the inverted products. Mechanistic studies indicate that oxidative addition of the diarylmethyl 2,3,4,5,6-pentafluorobenzoate substrates to (IPr)Pd(0) results in the selective cleavage of the O-C(benzyl) bond in part because of a stabilizing η3-interaction between the benzyl ligand and Pd. This is in contrast to previously described Pd-catalyzed Suzuki-Miyaura reactions involving phenyl esters, which involve selective cleavage of the C(acyl)-O bond, because there is no stabilizing η3-interaction. It is anticipated that this fundamental knowledge will aid the development of new catalytic systems, which use esters as electrophiles in cross-coupling reactions.

4.
Adv Synth Catal ; 362(22): 5062-5078, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33384575

ABSTRACT

Palladium(II) precatalysts are used extensively to facilitate cross-coupling reactions because they are bench stable and give high activity. As a result, precatalysts such as Buchwald's palladacycles, Organ's PEPPSI species, Nolan's allyl-based complexes, and Yale's 1-tert-butylindenyl containing complexes, are all commercially available. Comparing the performance of the different classes of precatalysts is challenging because they are typically used under different conditions, in part because they are reduced to the active species via different pathways. However, within a particular class of precatalyst, it is easier to compare performance because they activate via similar pathways and are used under the same conditions. Here, we evaluate the activity of different allyl-based precatalysts, such as (η3-allyl)PdCl(L), (η3-crotyl)PdCl(L), (η3-cinnamyl)PdCl(L), and (η3-1-tert-butylindenyl)PdCl(L) in Suzuki-Miyaura reactions. Specifically, we evaluate precatalyst performance as the ancillary ligand (NHC or phosphine), reaction conditions, and substrates are varied. In some cases, we connect relative activity to both the mechanism of activation and the prevalence of the formation of inactive palladium(I) dimers. Additionally, we compare the performance of in situ generated precatalysts with commonly used palladium sources such as tris(dibenzylideneacetone)dipalladium(0) (Pd2dba3), bis(acetonitrile)dichloropalladium(II) (Pd(CH3CN)2Cl2), and palladium acetate. Our results provide information about which precatalyst to use under different conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...