Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Chem Biodivers ; 21(2): e202301871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38320175

ABSTRACT

This report informs for the first time the chemical constituents of Diospyros xolocotzii and Diospyros digyna, the pesticidal and the acetylcholinesterase (AChE) inhibition potential of some compounds calculated by in silico approaches, the larvicidal activity against Spodoptera frugiperda of available compounds, the AChE inhibition of selected compounds, and the results of the molecular docking of the most active ones with this receptor. From the aerial parts of D. xolocotzii were isolated pentacyclic triterpenes (1-4, 6, 10, 11-13), phytosterols (15-17), and isodiospyrin (18), whereas the analysis of aerial parts of D. digyna conducted to the isolation of pentacyclic triterpenes (4, 5, 7-9, 11-14), (4S)-shinanolone (19), and scopoletin (20). For comparison purposes, origanal (21) was chemically prepared from 11. The in silico analysis showed that the tested compounds have pesticide potential. The larvicidal activities of 11>13>12 indicated that the increase of the oxidation degree at C-28 increases their bioactivity. Compounds 11 and 21 presented the higher inhibition in the acetylcholinesterase assay, and the higher binding energies, and for the interactionswith AChE by molecular docking. Both Diospyros species are sources of triterpenes with pesticidal potential and the molecular changes in lupane triterpenes correlate with the observed bioactivity and molecular docking.


Subject(s)
Diospyros , Pesticides , Animals , Molecular Docking Simulation , Diospyros/chemistry , Diospyros/metabolism , Acetylcholinesterase/metabolism , Spodoptera , Pentacyclic Triterpenes
2.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38140942

ABSTRACT

AIMS: To evaluate the capacity of fourteen sesquiterpenes to enhance the action of known antibiotics against two ß-lactam resistant strains, and to determine a possible mechanism of antibiotic sensitization by assessing their ability to inhibit a ß-lactamase enzyme. METHODS AND RESULTS: The broth microdilution method was used to determine the minimum inhibitory concentration (MIC) of ß-lactams cefuroxime (CEFM) and cefepime (CPM) against Staphylococcus aureus 23MR and Escherichia coli 82MR strains in the absence and presence of subinhibitory concentrations of fourteen natural sesquiterpenes. (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (5), xerantolide (8), estafiatin (11), and ambrosin (12) exhibited the best sensitizing effects in both strains. These compounds were able to reduce the MIC of CEFM by 2-fold (from 15.0 to 7.5 µg/mL) and CPM by 15-fold (from 0.9 to 0.06 µg/mL) in S. aureus 23MR. For E. coli 82MR, the MIC of CEFM was reduced up to 8-fold (from 120.0 to 15.0 µg/mL). In this strain, the activity of 8 and 11 surpassed that of clavulanic acid (positive reference), which reduced the MIC of CEFM from 120.0 to 60.0 µg/mL. To elucidate a possible mechanism of antibiotic sensitization, molecular docking studies were conducted with ß-lactamases. These studies revealed an affinity with the enzymes (energies > -4.93 kcal/mol) by the formation of hydrogen bonds with certain conserved amino acid residues within the active sites. However, the in vitro results indicated only marginal inhibition, with percentages <50%. CONCLUSIONS: The bioevaluations indicate that nine of fourteen sesquiterpenes enhance the action of CEFM and CPM against the ß-lactam resistant strains, and these compounds displayed moderate activity as inhibitors of ß-lactamase.


Subject(s)
Escherichia coli , beta-Lactamase Inhibitors , beta-Lactamase Inhibitors/pharmacology , Staphylococcus aureus/metabolism , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactams/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
3.
Front Robot AI ; 10: 1032748, 2023.
Article in English | MEDLINE | ID: mdl-36860557

ABSTRACT

A few years ago, powered prostheses triggered new technological advances in diverse areas such as mobility, comfort, and design, which have been essential to improving the quality of life of individuals with lower limb disability. The human body is a complex system involving mental and physical health, meaning a dependant relationship between its organs and lifestyle. The elements used in the design of these prostheses are critical and related to lower limb amputation level, user morphology and human-prosthetic interaction. Hence, several technologies have been employed to accomplish the end user's needs, for example, advanced materials, control systems, electronics, energy management, signal processing, and artificial intelligence. This paper presents a systematic literature review on such technologies, to identify the latest advances, challenges, and opportunities in developing lower limb prostheses with the analysis on the most significant papers. Powered prostheses for walking in different terrains were illustrated and examined, with the kind of movement the device should perform by considering the electronics, automatic control, and energy efficiency. Results show a lack of a specific and generalised structure to be followed by new developments, gaps in energy management and improved smoother patient interaction. Additionally, Human Prosthetic Interaction (HPI) is a term introduced in this paper since no other research has integrated this interaction in communication between the artificial limb and the end-user. The main goal of this paper is to provide, with the found evidence, a set of steps and components to be followed by new researchers and experts looking to improve knowledge in this field.

4.
Fitoterapia ; 155: 105067, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34688822

ABSTRACT

Ten compounds, including a new anti-inflammatory acyl triterpene, 3ß-palmitoyloxy-1ß,11α-dihydroxy-olean-12-ene, were isolated from the bioactive organic extract prepared from the leaves of Sapium lateriflorum (syn: S. nitidum). The isolated compounds were screened for their cytotoxic activity against selected human cancer cell lines and did not display significant activity. They were also evaluated as anti-inflammatory agents in mouse models (TPA-induced edema in the ear and in a carrageenan-induced paw edema model). The results indicated that the new compound, 3ß-palmitoyloxy-1ß,11α-dihydroxy-olean-12-ene, was the compound with major anti-inflammatory activity similar to that of indomethacin, being the hydroxyl at C-11 important for the observed activity. The results of docking studies of the 3ß-palmitoyloxy esters of olean-12-ene with NF-κB and with COX-2 receptors were consistent with possible molecular mechanisms of the anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Esters/pharmacology , Sapium/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Line, Tumor , Edema/chemically induced , Esters/isolation & purification , Humans , Mexico , Mice , Molecular Docking Simulation , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry
5.
Plants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922510

ABSTRACT

Three pathogenic fungi of blueberry (Vaccinium spp.) responsible for dieback disease, identified as Pestalotiopsis clavispora, Colletotrichum gloeosporioides and Lasiodiplodia pseudotheobromae, were isolated in the northwestern region of the state of Michoacán, Mexico. The mycelial growth in vitro of these fungi was inhibited by extracts from Lantana hirta, Argemone ochroleuca and Adenophyllum porophyllum, medicinal plants collected in Sahuayo, Michoacán, Mexico. The extracts showed different degrees of inhibition; the most effective were: M5L extract from L. hirta and M6LFr extract from A. ochroleuca, both of which inhibited 100% of the mycelial growth of P. clavispora and C. gloeosporioides; and M4LS extract from A. porophyllum, which inhibited 100% of the mycelial growth of the three pathogens. The extracts were fractionated by thin layer and column chromatography, and the most active fractions were analyzed by gas chromatography-mass spectrometry. The major compounds identified in L. hirta extract were Phytol and α-Sitosterol. The compounds identified in A. ochroleuca were Toluene and Benzene, 1,3-bis(3-phenoxyphenoxy)-. In A. porophyllum, the compound identified was Hexanedioic acid, bis(2-ethylhexyl) ester. These results show the potential of L. hirta, A. ochroleuca and A. porophyllum as a source of antifungal compounds.

6.
PeerJ ; 9: e11796, 2021.
Article in English | MEDLINE | ID: mdl-35070514

ABSTRACT

Phytochemical diversity (PD) can be considered as a defensive trait; it can operate through single plant secondary metabolites or usually as complex mixtures of them. We tested the more diversity-better defense hypothesis correlating the leaf plant secondary metabolites (PSMs) with the incidence of plant enemies on Hass avocado trees. We expected a negative correlation between the occurrence of plant enemies and PD metrics. Also, as intraspecific PSMs polymorphisms in plant populations are common, we studied the incidence of plant enemies on Hass avocado trees representing chemical variants (chemotypes). We expected a differential incidence of plant enemies among trees grouped by their mono and sesquiterpene + phenylpropanoid chemotypes. We analyzed foliar hexane extracts from 236 trees in 17 orchards by gas chromatography and for the incidence of red mite, thrips, whitefly, avocado branch borer, fruit rot, scab, and peduncle collar blight. The predicted negative correlation between the plant enemies' incidence and the phytochemical metrics did not occur. To determine the relationship between enemy incidence and chemotypes we grouped the trees by cluster analysis using a matrix of PSMs in each tree. Most trees were grouped under four out of 23 chemotypes. Branch borers attacked trees of low-frequency chemotypes more frequently than trees with common chemotypes. The incidence of five plant enemies was different among the predominant chemotypes. The hypothesis of more diversity-better defense was not supported by the correlations between the phytochemical diversity and the incidence of pests and pathogens in Hass avocado orchards. Based on our results, we hypothesize that phytochemical diversity function as a defensive trait relies more on differentiation among individuals in a population than on the sole increase of chemical diversity. Also, the differential incidence of pests and pathogens on trees classified by their foliar chemotypes implies that these susceptibility or resistance markers represent potential useful tools for Hass avocado orchard pest management.

7.
Bioorg Chem ; 100: 103919, 2020 07.
Article in English | MEDLINE | ID: mdl-32417524

ABSTRACT

Chemical investigation of the aerial parts of Cnidoscolus spinosus resulted in the isolation of relatively infrequent hopane-type triterpenes, 3ß-acetoxy-hop-22(29)-ene (1), first reported here as natural product, together with 3-oxo-hop-22(29)-ene (2), and 3ß-hydroxy-hop-22(29)-ene (3). ß-Amyrin palmitate and three phytosterols were also characterized. The structures of the compounds were established using spectroscopic methods, and those of 1 and 2 were confirmed by crystallographic analysis. Selected biological activities for the isolated hopane-type triterpenes were tested through a series of assays for determining the cytotoxic, anti-inflammatory, α-glucosidase inhibition and antiparasitic activities. Compounds 1-3 did not show cytotoxic activity, compound 1 displayed an important inhibitory effect in the mouse ear induced inflammation assay, and significantly inhibited the yeast α-glucosidase activity in vitro and in silico. Additionally, compounds 2 and 3 showed marginal activities against Trypanosoma cruzi and Leishmania mexicana. Therefore, the bioactivities of hopane-type triterpenes deserve further investigation, particularly their anti-inflammatory properties.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Euphorbiaceae/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Male , Mice , Molecular Docking Simulation , Triterpenes/isolation & purification , Yeasts/enzymology , alpha-Glucosidases/metabolism
8.
Am J Bot ; 106(7): 1021-1031, 2019 07.
Article in English | MEDLINE | ID: mdl-31299090

ABSTRACT

PREMISE: Closely related species occurring in sympatry may experience the negative consequences of interspecific pollen transfer if reproductive isolation (RI) barriers are not in place. We evaluated the importance of pre- and post-pollination RI barriers in three sympatric species of Achimenes (Gesneriaceae), including ecogeographic, phenological, floral isolation, self-pollination, and hybrid viability (fruit and seed set). METHODS: We recorded geographic distribution throughout species ranges and assessed flowering phenology and pollinator visitation at one site in central Mexico. In the greenhouse, we measured floral traits involved in RI and quantified fruit and seed set for from self, intraspecific, and interspecific crosses. RESULTS: Ecogeographic barriers were important in RI, but under sympatry, phenological and floral barriers contributed more to total RI. Phenological RI varied between species and years, while floral RI was 100% effective at preventing interspecific visitation. Species showed differences in floral morphology, color, and scents associated with specialized pollination systems (A. antirrhina-hummingbirds, A. flava-bees, A. patens-butterflies); heterospecific visitation events were restricted to rare secondary pollinators. Hybrid crosses consistently yielded progeny in lower numbers than intraspecific crosses. CONCLUSIONS: This study indicated that neither autogamy nor early post-pollination barriers prevent interspecific pollen flow between Achimenes species. However, floral isolation, acting through a combination of attraction and reward traits, consistently ensures specificity of the pollination system. These results suggest that selection on floral traits to reduce the costs of hybrid progeny production may have played a role in evolution or maintenance of specialized pollination systems in Achimenes.


Subject(s)
Flowers/physiology , Lamiales , Pollination , Reproductive Isolation , Sympatry , Animals , Bees , Birds , Butterflies , Hybridization, Genetic , Odorants , Plant Nectar/metabolism , Self-Fertilization , Sugars/metabolism , Volatile Organic Compounds/metabolism
9.
Bioorg Chem ; 91: 103091, 2019 10.
Article in English | MEDLINE | ID: mdl-31319298

ABSTRACT

Sensitizing activities exerted by 3,4-dihydro-7-hydroxycadalene (1), rac-3,7-dihydroxy-3(4H)-isocadalen-4-one (4) and (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (9), the major cadinanes isolated from Heterotheca inuloides, towards multidrug-resistant MES-SA/MX2 and parental MES-SA epithelial human uterine sarcoma cell lines were evaluated. We also evaluated the in silico interactions (expressed as ΔGbinding in kcal/mol) of cadinanes 1, 4 and 9 in an in vitro assay, and also tested several structurally related natural compounds with the multidrug resistance protein (MDR1, P-glycoprotein), human multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP) structures as pharmacological targets using AutoDock and AutoDock Vina. Compound 1 potentiated the cytotoxicity of doxorubicin and mitoxantrone drugs in resistant MES-SA/MX2 cells, compared to cells treated with each drug alone. Compound 1 could reverse the resistance to doxorubicin 12.44 fold at a concentration of 5 µM. It also re-sensitized cells to mitoxantrone 3.94 fold. Hence, compound 1 may be considered as a potential chemosensitizing agent to overcome multidrug resistance in cancer. The docking analysis suggested that there are interactions between cadinanes from H. inuloides and MDR1, MRP1, and BCRP proteins mainly through π-π interactions and hydrogen bonds.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Asteraceae/chemistry , Biological Products/pharmacology , Polycyclic Sesquiterpenes/pharmacology , ATP-Binding Cassette Transporters/genetics , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Biological Products/chemistry , Biological Products/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/isolation & purification , Structure-Activity Relationship
10.
PeerJ ; 6: e5444, 2018.
Article in English | MEDLINE | ID: mdl-30128203

ABSTRACT

BACKGROUND: Despite numerous tests of Darwin's naturalization hypothesis (DNH) evidence for its support or rejection is still contradictory. We tested a DNH derived prediction stating that nonnative species (NNS) without native congeneric relatives (NCR) will spread to a greater number of localities than species with close relatives in the new range. This test controlled the effect of residence time (Rt) on the spread of NNS and used naturalized species beyond their lag phase to avoid the effect of stochastic events in the establishment and the lag phases that could obscure the NCR effects on NNS. METHODS: We compared the number of localities (spread) occupied by NNS with and without NCR using 13,977 herbarium records for 305 NNS of weeds. We regressed the number of localities occupied by NNS versus Rt to determine the effect of time on the spread of NNS. Then, we selected the species with Rt greater than the expected span of the lag phase, whose residuals were above and below the regression confidence limits; these NNS were classified as widespread (those occupying more localities than expected by Rt) and limited-spread (those occupying fewer localities than expected). These sets were again subclassified into two groups: NNS with and without NCR at the genus level. The number of NNS with and without NCR was compared using χ2 tests and Spearman correlations between the residuals and the number of relatives. Then, we grouped the NNS using 34 biological attributes and five usages to identify the groups' possible associations with spread and to test DNH. To identify species groups, we performed a nonmetric multidimensional scaling (NMDS) analysis and evaluated the influences of the number of relatives, localities, herbarium specimens, Rt, and residuals of regression. The Spearman correlation and the Mann-Whitney U test were used to determine if the DNH prediction was met. Additionally, we used the clustering objects on subsets of attributes (COSA) method to identify possible syndromes (sets of biological attributes and usages) associated to four groups of NNS useful to test DNH (those with and without NCR and those in more and fewer localities than expected by Rt). RESULTS: Residence time explained 33% of the variation in localities occupied by nonnative trees and shrubs and 46% of the variation for herbs and subshrubs. The residuals of the regression for NNS were not associated with the number or presence of NCR. In each of the NMDS groups, the number of localities occupied by NNS with and without NCR did not significantly differ. The COSA analysis detected that only NNS with NCR in more and fewer localities than expected share biological attributes and usages, but they differ in their relative importance. DISCUSSION: Our results suggest that DNH does not explain the spread of naturalized species in a highly heterogeneous country. Thus, the presence of NCR is not a useful characteristic in risk analyses for naturalized NNS.

12.
Ecol Evol ; 7(9): 3037-3045, 2017 05.
Article in English | MEDLINE | ID: mdl-28480003

ABSTRACT

Secondary sexual traits may convey reliable information about males' ability to resist pathogens and that females may prefer those traits because their genes for resistance would be passed on to their offspring. In many insect species, large males have high mating success and can canalize more resources to the immune function than smaller males. In other species, males use pheromones to identify and attract conspecific mates, and thus, they might function as an honest indicator of a male's condition. The males of orchid bees do not produce pheromones. They collect and store flower volatiles, which are mixed with the volatile blends from other sources, like fungi, sap and resins. These blends are displayed as perfumes during the courtship. In this study, we explored the relationship between inter-individual variation in body size and blend composition with the males' phenoloxidase (PO) content in Euglossa imperialis. PO content is a common measure of insect immune response because melanine, its derived molecule, encapsulates parasites and pathogens. Body size and blend composition were related to bees' phenolic PO content. The inter-individual variation in body size and tibial contents could indicate differences among males in their skills to gain access to some compounds. The females may evaluate their potential mates through these compounds because some of them are reliable indicators of the males' capacity to resist infections and parasites.

13.
J Ethnopharmacol ; 195: 39-63, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27847336

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Heterotheca inuloides Cass. (Asteraceae) has been traditionally used to treat a wide range of diseases in Mexico in the treatment of rheumatism, topical skin inflammation, muscular pain colic, and other painful conditions associated with inflammatory processes, additionally has been used to treat dental diseases, and gastrointestinal disorders. This species has also been used for the treatment of cancer and diabetes. This review provides up-to-date information on the botanical characterization, traditional uses, chemical constituents, as well as the biolological activities of H. inuloides. MATERIAL AND METHODS: A literature search was conducted by analyzing the published scientific material. Information related to H. inuloides was collected from various primary information sources, including books, published articles in peer-reviewed journals, monographs, theses and government survey reports. The electronic search of bibliographic information was gathered from accepted scientific databases such as Scienfinder, ISI Web of Science, Scielo, LILACS, Redalyc, Pubmed, SCOPUS and Google Scholar. RESULTS: To date, more than 140 compounds have been identified from H. inuloides, including cadinane sesquiterpenes, flavonoids, phytosterols, triterpenes, benzoic acid derivatives, and other types of compounds. Many biological properties associated with H. inuloides. Many studies have shown that the extracts and some compounds isolated from this plant exhibit a broad spectrum of biological activities such as antioxidant, antitumor, anti-inflammatory, cytotoxic, and chelating activities, as well as insecticidal and phytotoxic activity. To date, reports on the toxicity of H. inuloides are limited. CONCLUSIONS: A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethnomedical uses of H. inuloides have been recorded in Mexico to treat rheumatism, pain, and conditions associated with inflammatory processes. Pharmacological studies have demonstrated the activity of certain compounds associated with the traditional use of the plant such as the anti-inflammatory and cytotoxic activities of the species. The available literature showed that cadinene sesquiterpenes are the major bioactive components of H. inuloides with potential pharmacological activities. Further investigations are needed to fully understand the mode of action of the major active constituents.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Arnica/chemistry , Medicine, Traditional , Phytochemicals/therapeutic use , Plant Extracts/therapeutic use , Analgesics/adverse effects , Analgesics/isolation & purification , Animals , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/isolation & purification , Humans , Phytochemicals/adverse effects , Phytochemicals/isolation & purification , Phytotherapy , Plant Extracts/adverse effects , Plant Extracts/isolation & purification , Plants, Medicinal
14.
Chem Biodivers ; 14(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27477108

ABSTRACT

Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors.


Subject(s)
Fatty Acids/analysis , Genetic Variation , Jatropha/chemistry , Biofuels , Environment , Fatty Acids/genetics , Mexico , Microsatellite Repeats , Phorbol Esters/analysis , Plant Oils/chemistry , Seeds/chemistry
15.
Chem Biodivers ; 13(12): 1767-1775, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27505234

ABSTRACT

The Hass avocado tree Persea americana cv. Hass was derived from a single hybrid tree of P. americana var. drymifolia and P. americana var. guatemalensis, and it is propagated clonally by grafting. This cultivar is the most widely planted in the world but its profile of secondary metabolites has been studied rarely despite of its importance in plant protection. We illustrate the variability of the volatilome of mature leaves by describing the average chemical composition and the phenotypic variability found in 70 trees. Contrary to the uniformity expected in the Hass cultivar, high variability coefficients were found for most of the 36 detected foliar volatile compounds; furthermore we found six chemotypes grouping the foliar phenotypes of the sampled trees using hierarchical cluster analysis. About 48% of trees were grouped in one chemotype; five chemotypes grouped the remaining trees. The compounds that determined these chemotypes were: estragole, α-farnesene, ß-caryophyllene, germacrene D, α-cubebene and eugenol. This striking variation in a cultivar propagated clonally is discussed in terms of somatic mutation.


Subject(s)
Persea/chemistry , Persea/classification , Volatile Organic Compounds/analysis , Cluster Analysis , Gas Chromatography-Mass Spectrometry , Phenotype , Plant Leaves/chemistry , Volatile Organic Compounds/chemistry
16.
J Nat Prod ; 78(11): 2634-41, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26566007

ABSTRACT

Eight cadinane-type sesquiterpenoids (1-8) together with some triterpenoids, flavonoids, and sterols were isolated from the aerial parts of Heterotheca inuloides. The structures of the new compounds (1-4) were elucidated on the basis of extensive 1D and 2D NMR spectroscopic data analysis. The structures of the new (1-3) and the known (5-7) sesquiterpenoids were confirmed by X-ray crystallography. The absolute configurations of metabolites 2-5 were determined by comparing their experimental and calculated electronic circular dichroism spectra and confirmed via refinement of the Flack parameter using anomalous X-ray scattering from the oxygen atoms and chemical correlation methods. The sesquiterpenoids were evaluated for their anti-inflammatory potential by applying the TPA-induced mouse ear edema model. The results revealed that some of these metabolites exhibit moderate anti-inflammatory activity. At a dose of 228 µg/ear compound 1 showed 43.14 ± 8.09% inhibition on ear edema, indicating an IC50 > 228 µg/ear.


Subject(s)
Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Asteraceae/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Crystallography, X-Ray , Disease Models, Animal , Ear , Edema/chemically induced , Edema/drug therapy , Edema/pathology , Mice , Molecular Conformation , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry , Tetradecanoylphorbol Acetate/pharmacology
17.
PLoS One ; 9(6): e98454, 2014.
Article in English | MEDLINE | ID: mdl-24887512

ABSTRACT

Over the past 20 years, the biodiversity associated with shaded coffee plantations and the role of diverse agroforestry types in biodiversity conservation and environmental services have been topics of debate. Endophytic fungi, which are microorganisms that inhabit plant tissues in an asymptomatic manner, form a part of the biodiversity associated with coffee plants. Studies on the endophytic fungi communities of cultivable host plants have shown variability among farming regions; however, the variability in fungal endophytic communities of coffee plants among different coffee agroforestry systems is still poorly understood. As such, we analyzed the diversity and communities of foliar endophytic fungi inhabiting Coffea arabica plants growing in the rustic plantations and simple polycultures of two regions in the center of Veracruz, Mexico. The endophytic fungi isolates were identified by their morphological traits, and the majority of identified species correspond to species of fungi previously reported as endophytes of coffee leaves. We analyzed and compared the colonization rates, diversity, and communities of endophytes found in the different agroforestry systems and in the different regions. Although the endophytic diversity was not fully recovered, we found differences in the abundance and diversity of endophytes among the coffee regions and differences in richness between the two different agroforestry systems of each region. No consistent pattern of community similarity was found between the coffee agroforestry systems, but we found that rustic plantations shared the highest number of morphospecies. The results suggest that endophyte abundance, richness, diversity, and communities may be influenced predominantly by coffee region, and to a lesser extent, by the agroforestry system. Our results contribute to the knowledge of the relationships between agroforestry systems and biodiversity conservation and provide information regarding some endophytic fungi and their communities as potential management tools against coffee plant pests and pathogens.


Subject(s)
Agriculture , Biodiversity , Coffea/microbiology , Ecosystem , Endophytes/classification , Fungi/classification , Mexico
18.
Fitoterapia ; 94: 155-63, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24565963

ABSTRACT

The guaianolide 8-epi-mikanokryptin (1) and the melampolide 11Hß-11,13-dihydromicrantholide (2) along with known sesquiterpene lactones (3-13) and other constituents were isolated from the aerial parts of different populations of Mikania micrantha and Mikania cordifolia collected in several states of Mexico. The relative and absolute configurations of 1 were determined by X-ray diffraction and CD analysis, respectively. Considering the (1)H and (13)C NMR chemical shift similarities and the H-H coupling constant values, a [(1)D(14), (15)D5] conformation was established for micrantholides (2, 8-13). We tested nearly all the sesquiterpene lactones for antiproliferative activity in human cancer cell lines, and they exhibited moderate activity. Additionally, in a mouse ear model of edema induced by TPA, the anti-inflammatory activities were marginal.


Subject(s)
Anti-Inflammatory Agents/chemistry , Lactones/chemistry , Mikania/chemistry , Plant Extracts/chemistry , Sesquiterpenes/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Disease Models, Animal , Edema , Humans , Inhibitory Concentration 50 , Lactones/isolation & purification , Lactones/pharmacology , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Plant Components, Aerial/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes, Guaiane/isolation & purification , Sesquiterpenes, Guaiane/pharmacology
19.
Oecologia ; 174(1): 195-203, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23942983

ABSTRACT

Populations of the same species vary in their secondary metabolite content. This variation has been attributed to biotic and abiotic environmental conditions as well as to historical factors. Some studies have focused on the geographic variation of chemical diversity in plant populations, but whether this structure conforms to a central-marginal model or a mosaic pattern remains unclear. Furthermore, assessing the chemical diversity of invasive plants in their native distribution facilitates the understanding of their relationships with natural enemies. We examined the geographic variation of chemical diversity in Mexican populations of the bittervine weed Mikania micrantha and its relationship to herbivore damage. The foliar volatile terpenoid blend was analyzed in 165 individuals of 14 populations in the Pacific and Gulf of Mexico tropical watersheds. A cluster analysis grouped individuals with similar terpenoid blends into 56 compositional types. Chemical diversity was measured using the number of compounds and their concentration within the blends for individuals, and the number and frequency of compositional types for populations. A stepwise multiple regression analysis performed with geographic, climatic, and chemical diversity variables explained herbivore damage. However, population-level chemical diversity was the only variable found to be significant (ß = -0.79, P = 0.042) in the model (R(2) = 0.89). A Mantel test using Euclidean distances did not indicate any separation by geographic origin; however, four barriers were identified using Monmonier's algorithm. We conclude that variation in population-level chemical diversity follows a mosaic pattern in which geographic factors (i.e., natural barriers) have some effect and that variation is also associated with the local intensity of herbivore attack.


Subject(s)
Herbivory , Mikania/chemistry , Animals , Geography , Mexico , Plant Leaves/chemistry , Secondary Metabolism , Terpenes/analysis
20.
PLoS One ; 8(10): e77199, 2013.
Article in English | MEDLINE | ID: mdl-24130855

ABSTRACT

Plants produce specific volatile organic compound (VOC) blends in response to herbivory. Herbivore-induced blends may prime the plant for future attack or attract carnivorous insects; these responses have been considered adaptive for plants. If herbivores differentially modify the VOC emission among individuals within a group of plants they feed upon, then plant responses to herbivores will not only produce specific blends but also variation in odor among individuals, i.e. individuals smell the same, then having a uniform odor. We investigated the VOC emission variation or uniformity among tomato individuals (Solanum lycopersicum L. cv. Castlemart) in response to moderate wounding by (1) nymphs of the psyllid Bactericera cockerelli (Sulc.) (TP); (2) Lepidoptera chewing-feeding larvae of Fall Armyworm (Spodoptera frugiperda Smith) (FAW) and (3) of Cabbage Looper (Trichoplusia ni Hübner) (CL), and (4) mechanical damage (MD). We used a ratio-based analysis to compare the fold-change in concentration from constitutive to induced VOC emission. We also used size and shape analysis to compare the emission of damaged and non-damaged individuals. Aside of finding herbivore-specific blends in line with other studies, we found patterns not described previously. We detected constitutive and induced odor variation among individuals attacked by the same herbivore, with the induced odor uniformity depending on the herbivore identity. We also showed that the fold-change of VOCs from constitutive to induced state differed among individuals independently of the uniformity of the blends before herbivore attack. We discuss our findings in the context of the ecological roles of VOCs in plant-plant and plant-carnivore insects' interactions.


Subject(s)
Hemiptera/classification , Hemiptera/physiology , Herbivory/physiology , Odorants/analysis , Solanum lycopersicum/metabolism , Animals , Mechanical Phenomena , Species Specificity , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...