Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Molecules ; 27(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684474

ABSTRACT

Some studies aimed at revealing the relationship between protein structure and their functional properties. However, the majority of these reports have been carried out using protein isolates. There are limited reports on the possible relationship between the functional properties and the structure of a purified protein. In this work the amaranth 11S globulin acidic subunit (AAC) and five mutations of the same protein that were modified in their variable regions with antihypertensive peptides (VYVYVYVY and RIPP), were analyzed at two ionic strength (2.9 and 17.6 g/L NaCl) and pH (3.0-7.0). Results revealed better solubility for the proteins mutated at the terminal ends (AACM.1 and AACM.4) and lower solubility for the protein inserted with RIPP peptide. Spectroscopy studies revealed an increase of ß-sheet structure at high salt concentration for all proteins. It was also observed that salt concentration acted as a modulator, which allowed a better foam features for all modified proteins limiting movement of side chains and reducing red-shifted displacement of λmax. All proteins showed foam capacity ranging from 76 to 93% although foam stability was twofold better for modified proteins than for AAC at high salt concentration. This study allowed better understanding about the structural changes that influence the foaming properties of engineered proteins.


Subject(s)
Amaranthus , Globulins , Amaranthus/chemistry , Antihypertensive Agents/metabolism , Antihypertensive Agents/pharmacology , Globulins/chemistry , Hydrogen-Ion Concentration , Osmolar Concentration , Peptides/metabolism , Plant Proteins/metabolism
2.
Electron. j. biotechnol ; 37: 18-24, Jan. 2019. tab, ilus, graf
Article in English | LILACS | ID: biblio-1049076

ABSTRACT

BACKGROUND: The 11S globulin from amaranth is the most abundant storage protein in mature seeds and is well recognized for its nutritional value. We used this globulin to engineer a new protein by adding a four valinetyrosine antihypertensive peptide at its C-terminal end to improve its functionality. The new protein was named AMR5 and expressed in the Escherichia coli BL21-CodonPlus(DE3)-RIL strain using a custom medium (F8PW) designed for this work. RESULTS: The alternative medium allowed for the production of 652 mg/L expressed protein at the flask level, mostly in an insoluble form, and this protein was subjected to in vitro refolding. The spectrometric analysis suggests that the protein adopts a ß/α structure with a small increment of α-helix conformation relative to the native amaranth 11S globulin. Thermal and urea denaturation experiments determined apparent Tm and C1/2 values of 50.4°C and 3.04 M, respectively, thus indicating that the antihypertensive peptide insertion destabilized the modified protein relative to the native one. AMR5 hydrolyzed by trypsin and chymotrypsin showed 14- and 1.3-fold stronger inhibitory activity against angiotensin I-converting enzyme (IC50 of 0.034 mg/mL) than the unmodified protein and the previously reported amaranth acidic subunit modified with antihypertensive peptides, respectively. CONCLUSION: The inserted peptide decreases the structural stability of amaranth 11S globulin and improves its antihypertensive activity.


Subject(s)
Peptides/metabolism , Proteins/metabolism , Globulins/metabolism , Antihypertensive Agents/metabolism , Seeds , Temperature , Culture Media , Amaranthus , Protein Stability , Phytochemicals
3.
Appl Microbiol Biotechnol ; 103(6): 2493-2505, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30693404

ABSTRACT

Hypertension is a worldwide health problem. It is the main cardiovascular risk factor and affects about 31% of the world's adult population. The drugs used to control hypertension may cause side effects; for this reason, there are many investigations focused on searching for alternatives to control or prevent this disease through diet. For example, many peptides have demonstrated antihypertensive effects. The insertion of bioactive peptides is a biotechnological implement used to improve the nutraceutical properties of proteins. This work reviews the current data on the insertion of antihypertensive peptides (AHPs) into food proteins, the systems used to produce the AHPs, the advantages and disadvantages between them, the parameters to produce them at major scales, and their potential applications in pharmacy and functional foods.


Subject(s)
Antihypertensive Agents/chemistry , Dietary Supplements/analysis , Functional Food/analysis , Peptides/chemistry , Proteins/chemistry , Humans , Hypertension/drug therapy , Hypertension/prevention & control , Protein Engineering
4.
Appl Microbiol Biotechnol ; 102(22): 9595-9606, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30209550

ABSTRACT

The insertion of peptides is a biotechnology tool widely used to improve the nutraceutical properties of proteins. Because the effect of these insertions in protein stability and function is difficult to predict, it should be determined experimentally. In this study, we created two variants of amarantin acidic subunit and analyzed them along with other four proteins reported previously. We measured their response against two destabilizing agents: temperature and urea. The six proteins presented the insertion of antihypertensive peptides (VYVYVYVY or RIPP) in the variable regions of the protein. We observed that their effect strongly depended on the site of the insertion. The insertion in the variable region I stabilized the protein both thermally and chemically, but it affected the inhibitory activity of the angiotensin-converting enzyme in vitro. In contrast, insertions in other three regions were severely destabilizing, producing molten globules. Our findings reveal that the insertion of bioactive peptides in variable regions of a protein can increase or decrease the protein's thermal and chemical stability and that these conformational changes may also alter its final activity.


Subject(s)
Amaranthus/genetics , Antihypertensive Agents/metabolism , Peptides/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Engineering/methods , Protein Stability , Temperature , Urea
5.
Electron. j. biotechnol ; 19(4): 44-51, July 2016. ilus
Article in English | LILACS | ID: lil-793952

ABSTRACT

Background: The acidic subunit of amarantin (AAC)-the predominant amaranth seed storage protein-has functional potential and its third variable region (VR) has been modified with antihypertensive peptides to improve this potential. Here, we modified the C-terminal in the fourth VR of AAC by inserting four VY antihypertensive peptides. This modified protein (AACM.4) was expressed in Escherichia coli. In addition, we also recombinantly expressed other derivatives of the amarantin protein. These include: unmodified amarantin acidic subunit (AAC); amarantin acidic subunit modified at the third VR with four VY peptides (AACM.3); and amarantin acidic subunit doubly modified, in the third VR with four VY peptides and in the fourth VR with the RIPP peptide (AACM.3.4). Results: E. coli BL21-CodonPlus (DE3)-RIL was the most favorable strain for the expression of proteins. After 6 h of induction, it showed the best recombinant protein titer. The AAC and AACM.4 were obtained at higher titers (0.56 g/L) while proteins modified in the third VR showed lower titers: 0.44 g/L and 0.33 g/L for AACM.3 and AACM.3.4, respectively. As these AAC variants were mostly expressed in an insoluble form, we applied a refolding protocol. This made it possible to obtain all proteins in soluble form. Modification of the VR 4 improves the thermal stability of amarantin acidic subunit; AAC manifested melting temperature (Tm) at 34°C and AACM.4 at 37.2°C. The AACM.3 and AACM.3.4 did not show transition curves. Conclusions: Modifications to the third VR affect the thermal stability of amarantin acidic subunit.


Subject(s)
Plant Proteins/metabolism , Amaranthus , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Temperature , Protein Engineering , Blotting, Western , Bioreactors , Protein Subunits , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Protein Stability , Fermentation , Globulins
SELECTION OF CITATIONS
SEARCH DETAIL
...