Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Latinoam Microbiol ; 48(2): 56-65, 2006.
Article in English | MEDLINE | ID: mdl-17578073

ABSTRACT

The identification of microorganisms by whole genome DNA fingerprinting was tested "in silico". 94 HPV genome sequences were submitted to virtual hybridization analysis on a DNA chip with 342 probes. This Universal Fingerprinting Chip (UFC) constitutes a representative set of probes of all the possible 8-mer sequences having at least two internal and non contiguous sequence differences between all them. A virtual hybridization analysis was performed in order to find the fingerprinting pattern that represents the signals produced for the hybridization of the probes allowing at most a single mismatch. All the fingerprints for each virus were compared against each other in order to obtain all the pairwise distances measures. A match-extension strategy was applied to identify only the shared signals corresponding to the hybridization of the probes with homologous sequences between two HPV genomes. A phylogenetic tree was constructed from the fingerprint distances using the Neighbor-Joining algorithm implemented in the program Phylip 3.61. This tree was compared with that produced from the alignment of whole genome HPV sequences calculated with the program Clustal_X 1.83. The similarities between both trees are suggesting that the UFC-8 is able to discriminate accurately between viral genomes. A fingerprint comparative analysis suggests that the UFC-8 can differentiate between HPV types and sub-types.


Subject(s)
DNA Fingerprinting/methods , DNA Probes, HPV , Oligonucleotide Array Sequence Analysis/methods
2.
Mol Biotechnol ; 25(2): 113-29, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14526122

ABSTRACT

We developed a procedure to detect the 7 point mutations at Cys634 of the proto-oncogene RET, which is responsible for medullary thyroid carcinoma (MTC). Genomic DNA was prepared from blood samples obtained from normal and MTC-affected individuals belonging to a family with a history of the disease. The RET genotype for each individual was first established by performing restriction and sequencing analyses. Single-stranded target DNA was prepared by asymmetric polymerase chain reaction (PCR) amplification of a 93-bp fragment containing Cys634. The target was annealed with pairs of prelabeled stacking oligonucleotides designed to create appropriate 7-nucleotide gaps, which served as the sites of subsequent hybridization with glass-immobilized 7-mer probes. The target-stacking oligonucleotide duplexes were hybridized with DNA chips containing a set of eight 7-mer probes designed to detect the wild-type sequence and the seven point mutations described. We tested two sets of immobilized probes containing internal or 5'-terminal codon-634 single-base variations. Both groups of probes were able to discriminatively identify the mutations. The hybridization patterns indicated that the disease in this family was due to the C634Y mutation, in accord with the original sequence analysis. The hybridization-based mutation assignment was additionally supported by determination of the control homozygous and heterozygous hybridization patterns produced with synthetic targets having the normal or codon 634 mutant sequences. The effects of mismatch type and nearest-neighbor sequences on the occurrence of false-positive (mismatched) hybridizations are discussed.


Subject(s)
DNA Mutational Analysis/methods , Mutation/genetics , Nucleic Acid Hybridization/methods , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Amino Acid Sequence , Base Sequence , Carcinoma, Medullary/blood , Carcinoma, Medullary/genetics , Cysteine/genetics , Heterozygote , Humans , Molecular Sequence Data , Proto-Oncogene Mas , Proto-Oncogene Proteins c-ret , Thyroid Neoplasms/blood , Thyroid Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...