Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836718

ABSTRACT

Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 µg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 µg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.


Subject(s)
Nanoparticles , Proton Therapy , Animals , Mice , Protons , Proton Therapy/methods , Zinc/pharmacology , Magnetic Iron Oxide Nanoparticles
2.
Med Phys ; 50(5): 3184-3190, 2023 May.
Article in English | MEDLINE | ID: mdl-36852682

ABSTRACT

BACKGROUND: Recent proposals of high dose rate plans in protontherapy as well as very short proton bunches may pose problems to current beam monitor systems. There is an increasing demand for real-time proton beam monitoring with high temporal resolution, extended dynamic range and radiation hardness. Plastic scintillators coupled to optical fiber sensors have great potential in this context to become a practical solution towards clinical implementation. PURPOSE: In this work, we evaluate the capabilities of a very compact fast plastic scintillator with an optical fiber readout by a SiPM and electronics sensor which has been used to provide information on the time structure at the nanosecond level of a clinical proton beam. MATERIALS AND METHODS: A 3 × 3 × 3 mm3 plastic scintillator (EJ-232Q Eljen Technology) coupled to a 3 × 3 mm2 SiPM (MicroFJ-SMA-30035, Onsemi) has been characterized with a 70 MeV clinical proton beam accelerated in a Proteus One synchrocyclotron. The signal was read out by a high sampling rate oscilloscope (5 GS/s). By exposing the sensor directly to the proton beam, the time beam profile of individual spots was recorded. RESULTS: Measurements of detector signal have been obtained with a time sampling period of 0.8 ns. Proton bunch period (16 ns), spot (10 µs) and interspot (1 ms) time structures could be observed in the time profile of the detector signal amplitude. From this, the RF frequency of the accelerator has been extracted, which is found to be 64 MHz. CONCLUSIONS: The proposed system was able to measure the fine time structure of a clinical proton accelerator online and with ns time resolution.


Subject(s)
Proton Therapy , Scintillation Counting , Optical Fibers , Protons , Plastics
3.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362271

ABSTRACT

Ultra-high dose rate (UHDR) irradiation regimes have the potential to spare normal tissue while keeping equivalent tumoricidal capacity than conventional dose rate radiotherapy (CONV-RT). This has been called the FLASH effect. In this work, we present a new simulation framework aiming to study the production of radical species in water and biological media under different irradiation patterns. The chemical stage (heterogeneous phase) is based on a nonlinear reaction-diffusion model, implemented in GPU. After the first 1 µs, no further radical diffusion is assumed, and radical evolution may be simulated over long periods of hundreds of seconds. Our approach was first validated against previous results in the literature and then employed to assess the influence of different temporal microstructures of dose deposition in the expected biological damage. The variation of the Normal Tissue Complication Probability (NTCP), assuming the model of Labarbe et al., where the integral of the peroxyl radical concentration over time (AUC-ROO) is taken as surrogate for biological damage, is presented for different intra-pulse dose rate and pulse frequency configurations, relevant in the clinical scenario. These simulations yield that overall, mean dose rate and the dose per pulse are the best predictors of biological effects at UHDR.


Subject(s)
Radiotherapy Dosage , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...