Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1861(1): 228-235, 2019 01.
Article in English | MEDLINE | ID: mdl-30055131

ABSTRACT

Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. The inclusion of cholesterol (Chol) or ergosterol in the phosphatidylcholine membrane is known to significantly enhance the membrane affinity for theonellamide A (TNM-A). We have previously revealed that TNM-A stays in a monomeric form in dimethylsulfoxide (DMSO) solvent systems, whereas the peptide forms oligomers in aqueous media. In this study, we utilized 1H NMR chemical shift changes (Δδ1H) in aqueous DMSO solution to evaluate the TNM-A/sterol interaction. Because Chol does not dissolve well in this solvent, we used 25-hydroxycholesterol (25-HC) instead, which turned out to interact with membrane-bound TNM-A in a very similar way to that of Chol. We determined the dissociation constant, KD, by NMR titration experiments and measured the chemical shift changes of TNM-A induced by 25-HC binding in the DMSO solution. Significant changes were observed for several amino acid residues in a certain area of the molecule. The results from the solution NMR experiments, together with previous findings, suggest that the TNM-Chol complex, where the hydrophobic cavity of TNM probably incorporates Chol, becomes less polar by Chol interaction, resulting in a greater accumulation of the peptide in membrane. The deeper penetration of TNM-A into the membrane interior enhances membrane disruption. We also demonstrated that hydroxylated sterols, such as 25-HC that has higher solubility in most NMR solvents than Chol, act as a versatile substitute for sterol and could be used in 1H NMR-based studies of sterol-binding peptides.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Peptides, Cyclic/chemistry , Sterols/chemistry , Animals , Anisotropy , Antifungal Agents/chemistry , Dimethyl Sulfoxide/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Phosphatidylcholines/chemistry , Porifera/chemistry , Protein Binding , Protein Conformation , Solvents/chemistry , Temperature
2.
Bioorg Med Chem ; 24(21): 5235-5242, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27601372

ABSTRACT

Theonellamide A (TNM-A) is an antifungal bicyclic dodecapeptide isolated from a marine sponge Theonella sp. Previous studies have shown that TNM-A preferentially binds to 3ß-hydroxysterol-containing membranes and disrupts membrane integrity. In this study, several 1H NMR-based experiments were performed to investigate the interaction mode of TNM-A with model membranes. First, the aggregation propensities of TNM-A were examined using diffusion ordered spectroscopy; the results indicate that TNM-A tends to form oligomeric aggregates of 2-9 molecules (depending on peptide concentration) in an aqueous environment, and this aggregation potentially influences the membrane-disrupting activity of the peptide. Subsequently, we measured the 1H NMR spectra of TNM-A with sodium dodecyl sulfate-d25 (SDS-d25) micelles and small dimyristoylphosphatidylcholine (DMPC)-d54/dihexanoylphosphatidylcholine (DHPC)-d22 bicelles in the presence of a paramagnetic quencher Mn2+. These spectra indicate that TNM-A poorly binds to these membrane mimics without sterol and mostly remains in the aqueous media. In contrast, broader 1H signals of TNM-A were observed in 10mol% cholesterol-containing bicelles, indicating that the peptide efficiently binds to sterol-containing bilayers. The addition of Mn2+ to these bicelles also led to a decrease in the relative intensity and further line-broadening of TNM-A signals, indicating that the peptide stays near the surface of the bilayers. A comparison of the relative signal intensities with those of phospholipids showed that TNM-A resides in the lipid-water interface (close to the C2' portion of the phospholipid acyl chain). This shallow penetration of TNM-A to lipid bilayers induces an uneven membrane curvature and eventually disrupts membrane integrity. These results shed light on the atomistic mechanism accounting for the membrane-disrupting activity of TNM-A and the important role of cholesterol in its mechanism of action.


Subject(s)
Peptides, Cyclic/chemistry , Porifera/chemistry , Sterols/chemistry , Animals , Molecular Structure , Proton Magnetic Resonance Spectroscopy
3.
Biochim Biophys Acta ; 1858(6): 1373-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27003125

ABSTRACT

Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3ß-hydroxysterols, resulting in 1,3-ß-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3ß-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption.


Subject(s)
Lipid Bilayers/chemistry , Marine Biology , Peptides, Cyclic/chemistry , Porifera/chemistry , Animals , Phospholipids/chemistry
4.
Biochemistry ; 53(20): 3287-93, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24773476

ABSTRACT

Amphidinol 3 (AM3), a polyhydroxy-polyene metabolite from the dinoflagellate Amphidinium klebsii, possesses potent antifungal activity. Although AM3 permeabilizes phospholipid membranes only in the presence of sterol, the detailed molecular basis by which AM3 recognizes sterols in membranes remains unknown. Here, we investigated the molecular interaction between sterols and AM3 in membranes from the viewpoint of stereospecific molecular recognition using ergosterol, cholesterol, and epicholesterol, which is the 3-OH epimer of cholesterol. Dye leakage assays, surface plasmon resonance experiments, (2)H and (31)P NMR measurements, and microscopic observations revealed that AM3 directly interacts with membrane sterols through the strict molecular recognition of the stereochemistry of the sterol 3-OH group. The direct interaction enhances the membrane binding efficiency of AM3, which subsequently permeabilizes membranes without altering membrane integrity.


Subject(s)
Alkenes/chemistry , Alkenes/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Pyrans/chemistry , Pyrans/metabolism , Cells, Cultured , Dinoflagellida/chemistry , Dinoflagellida/metabolism , Drug Interactions , Magnetic Resonance Spectroscopy/methods , Protein Binding/physiology , Stereoisomerism
5.
Biochemistry ; 52(14): 2410-8, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23477347

ABSTRACT

Theonellamides (TNMs) are members of a distinctive family of antifungal and cytotoxic bicyclic dodecapeptides isolated from the marine sponge Theonella sp. Recently, it has been shown that TNMs recognize 3ß-hydroxysterol-containing membranes, induce glucan overproduction, and damage cellular membranes. However, to date, the detailed mode of sterol binding at a molecular level has not been determined. In this study, to gain insight into the mechanism of sterol recognition of TNM in lipid bilayers, surface plasmon resonance (SPR) experiments and solid-state deuterium nuclear magnetic resonance ((2)H NMR) measurements were performed on theonellamide A (TNM-A). SPR results revealed that the incorporation of 10 mol % cholesterol or ergosterol into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes significantly enhances the affinity of the peptide for the membrane, particularly in the initial binding to the membrane surface. These findings, together with the fact that binding of TNM-A to epicholesterol (3α-cholesterol)-containing liposomes and pure POPC liposomes was comparably weak, confirmed the preference of the peptide for the 3ß-hydroxysterol-containing membranes. To further establish the formation of the complex of TNM-A with 3ß-hydroxysterols in lipid bilayers, solid-state (2)H NMR measurements were conducted using deuterium-labeled cholesterol, ergosterol, or epicholesterol. The (2)H NMR spectra showed that TNM-A significantly inhibits the fast rotational motion of cholesterol and ergosterol, but not epicholesterol, therefore verifying the direct complexation between TNM-A and 3ß-hydroxysterols in lipid bilayers. This study demonstrates that TNM-A directly recognizes the 3ß-OH moiety of sterols, which greatly facilitates its binding to bilayer membranes.


Subject(s)
Lipid Bilayers/metabolism , Peptides, Cyclic/metabolism , Sterols/metabolism , Theonella/metabolism , Animals , Lipid Bilayers/chemistry , Liposomes/chemistry , Liposomes/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic/chemistry , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Sterols/chemistry , Surface Plasmon Resonance , Theonella/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...