Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166525, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35987478

ABSTRACT

Cardiac fibroblasts (CFs) undergo senescence in reaction to different stressors, leading to a poor prognosis of cardiac disease. Doxorubicin (Doxo) is an antineoplastic drug with strong cardiotoxic effects, which induces IL-1ß secretion and thus, triggers a potent pro-inflammatory response. Doxo induces CFs senescence; however, the mechanisms are not fully understood. Different pharmacological strategies have been used to eliminate senescent cells by inducing their apoptosis or modifying their secretome. However, Resolvin E1 (RvE1), a lipid derivative resolutive mediator with potent anti-inflammatory effects has not been used before to prevent CFs senescence. CFs were isolated from adult male C57BL/6J mice and subsequently stimulated with Doxo, in the presence or absence of RvE1. Senescence-associated ß-galactosidase activity (SA-ß-gal), γ-H2A.X, p53, p21, and senescence-associated secretory phenotype (SASP) were evaluated. The involvement of the NLRP3 inflammasome/interleukin-1 receptor (IL-1R) signaling pathway on CFs senescence was studied using an NLRP3 inhibitor (MCC950) and an endogenous IL-1R antagonist (IR1A). Doxo is able to trigger CFs senescence, as evidenced by an increase of γ-H2A.X, p53, p21, and SA-ß-gal, and changes in the SASP profile. These Doxo effects were prevented by RvE1. Doxo triggers IL-1ß secretion, which was dependent on NLRP3 activation. Doxo-induced CFs senescence was partially blocked by MCC950 and IR1A. In addition, IL-1ß also triggered CFs senescence, as evidenced by the increase of γ-H2A.X, p53, p21, SA-ß-gal activity, and SASP. All these effects were also prevented by RvE1 treatment. CONCLUSION: These data show the anti-senescent role of RvE1 in Doxo-induced CFs senescence, which could be mediated by reducing IL-1ß secretion.


Subject(s)
Inflammasomes , Interleukin-1beta/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Cellular Senescence , Doxorubicin/pharmacology , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Fibroblasts/metabolism , Furans , Indenes , Inflammasomes/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Interleukin-1/metabolism , Sulfonamides , Tumor Suppressor Protein p53/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/pharmacology
2.
Biochem Pharmacol ; 201: 115078, 2022 07.
Article in English | MEDLINE | ID: mdl-35551917

ABSTRACT

Endothelial cell senescence contributes to chronic inflammation and endothelial dysfunction, while favoring cardiovascular disorders and frailty. Senescent cells acquire a pro-inflammatory secretory phenotype that further propagates inflammation and senescence to neighboring cells. Cell senescence can be provoked by plethora of stressors, including inflammatory molecules and chemotherapeutic drugs. Doxorubicin (Doxo) is a powerful anthracycline anticancer drug whose clinical application is constrained by a dose-limiting cardiovascular toxicity. We here investigated whether cell senescence can contribute to the vascular damage elicited by Doxo. In human umbilical vein endothelial cells (HUVEC) cultures, Doxo (10-100 nM) increased the number of SA-ß-gal positive cells and the levels of γH2AX, p21 and p53, used as markers of senescence. Moreover, we identified Doxo-induced senescence to be mediated by the nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome, a key player of the immune innate system capable of releasing interleukin (IL)-1ß. In fact, IL-1ß itself mimicked the stimulatory action of Doxo on both NLRP3 activation and cellular senescence, while the pharmacological blockade of IL-1 receptors markedly attenuated the pro-senescence effects of Doxo. In search of additional pharmacological strategies to attenuate Doxo-induced endothelial senescence, we identified resolvin E1 (RvE1), an endogenous pro-resolving mediator, as capable of reducing cell senescence induced by both Doxo and IL-1ß by interfering with the increased expression of pP65, NLRP3, and pro-IL-1ß proteins and with the formation of active NLRP3 inflammasome complexes. Overall, RvE1 and the blockade of the NLRP3 inflammasome-IL-1ß axis may offer a novel therapeutic approach against Doxo-induced cardiovascular toxicity and subsequent sequelae.


Subject(s)
Doxorubicin , Eicosapentaenoic Acid , Human Umbilical Vein Endothelial Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Cellular Senescence/drug effects , Doxorubicin/pharmacology , Drug Interactions , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/immunology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammasomes/drug effects , Inflammasomes/immunology , Inflammasomes/metabolism , Inflammation/chemically induced , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...