Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Res ; 81(3): 350-355, 2020 05.
Article in English | MEDLINE | ID: mdl-31777976

ABSTRACT

Acylthiosemicarbazides 8a-n were designed by structural modification of lead Compound 7. The syntheses of 8a-n involve a five-step procedure starting from carboxylic acids. Compounds 8a-n were tested against three Mycobacterium tuberculosis strains to measure their inhibitory antituberculosis activities. These activities could be explained according to the presence or absence of the chlorine substituent in the aromatic ring of the amide joined to the thiosemicarbazide core. Thiosemicarbazide derivative 8n is a candidate for the development of novel antitubercular agents. Ongoing studies are focused on exploring the mechanism by which these compounds inhibit M. tuberculosis cell growth.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Semicarbazides/pharmacology , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Chlorocebus aethiops , Semicarbazides/chemical synthesis , Semicarbazides/chemistry , Structure-Activity Relationship , Vero Cells
2.
Mol Biol Rep ; 45(6): 2563-2570, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30311126

ABSTRACT

The search for new compounds effective against Mycobacterium tuberculosis is still a priority in medicine. The evaluation of microorganisms isolated from non-conventional locations offers an alternative to look for new compounds with antimicrobial activity. Endophytes have been successfully explored as source of bioactive compounds. In the present work we studied the nature and antimycobacterial activity of a compound produced by Streptomyces scabrisporus, an endophyte isolated from the medicinal plant Amphipterygium adstringens. The active compound was detected as the main secondary metabolite present in organic extracts of the streptomycete and identified by NMR spectroscopic data as steffimycin B (StefB). This anthracycline displayed a good activity against M. tuberculosis H37Rv ATCC 27294 strain, with MIC100 and SI values of 7.8 µg/mL and 6.42, respectively. When tested against the rifampin mono resistant M. tuberculosis Mtb-209 pathogen strain, a better activity was observed (MIC100 of 3.9 µg/mL), suggesting a different action mechanism of StefB from that of rifampin. Our results supported the endophyte Streptomyces scabrisporus as a good source of StefB for tuberculosis treatment, as this anthracycline displayed a strong bactericidal effect against M. tuberculosis, one of the oldest and more dangerous human pathogens causing human mortality.


Subject(s)
Anthracyclines/pharmacology , Sapindaceae/metabolism , Anacardiaceae , Anthracyclines/isolation & purification , Anthracyclines/metabolism , Anti-Infective Agents/pharmacology , Antitubercular Agents , Endophytes/isolation & purification , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Plant Extracts/isolation & purification , Plants, Medicinal/metabolism , Sapindaceae/toxicity , Streptomycetaceae/metabolism
3.
Mar Drugs ; 12(4): 1757-72, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24681629

ABSTRACT

Caulerpin (1a), a bis-indole alkaloid from the marine algal Caulerpa sp., was synthesized in three reaction steps with an overall yield of 11%. The caulerpin analogues (1b-1g) were prepared using the same synthetic pathway with overall yields between 3% and 8%. The key reaction involved a radical oxidative aromatic substitution involving xanthate (3) and 3-formylindole compounds (4a-4g). All bis-indole compounds synthesized were evaluated against the Mycobacterium tuberculosis strain H37Rv, and 1a was found to display excellent activity (IC50 0.24 µM).


Subject(s)
Biological Products/pharmacology , Caulerpa/chemistry , Indoles/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Inhibitory Concentration 50
SELECTION OF CITATIONS
SEARCH DETAIL
...