Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Contrast Media Mol Imaging ; 2021: 1250360, 2021.
Article in English | MEDLINE | ID: mdl-34803544

ABSTRACT

Purpose: The majority of X-ray contrast agents (XCA) are made with iodine, but iodine-based XCA (I-XCA) exhibit low contrast in high kVp X-rays due to iodine's low atomic number (Z = 53) and K-edge (33.1 keV). While rhenium is a transition metal with a high atomic number (Z = 75) and K-edge (71.7 keV), the utilization of rhenium-based XCA (Re-XCA) in X-ray imaging techniques has not been studied in depth. Our study had two objectives: (1) to compare both the image quality and the absorbed dose of I- and Re-XCA and (2) to prepare and image a rhenium-doped scaffold. Procedures. I- and Re-XCA were prepared and imaged from 50 to 120 kVp by Micro-computed tomography (µCT) and digital radiography and from 120 to 220 kVp by planar X-ray imaging. The scans were repeated using 0.1 to 1.6 mm thick copper filters to harden the X-ray beam. A rhenium-doped scaffold was prepared via electrospinning, used to coat catheters, and imaged at 90 kVp by µCT. Results: I-XCA have a greater contrast-to-noise ratio (CNR) at 50 and 80 kVp, but Re-XCA have a greater CNR at >120 kVp. The difference in CNR is increased as the thickness of the copper filters is increased. For instance, the percent CNR improvement of rhenium over iodine is 14.2% with a 0.6 mm thick copper filter, but it is 59.1% with a 1.6 mm thick copper filter, as shown at 120 kVp by µCT. Upon coating them with a rhenium-doped scaffold, the catheters became radiopaque. Conclusions: Using Monte Carlo simulations, we showed that it is possible to reduce the absorbed dose of high kVp X-rays while allowing the acquisition of high-quality images. Furthermore, radiopaque catheters have the potential of enhancing the contrast during catheterizations and helping physicians to place catheters inside patients more rapidly and precisely.


Subject(s)
Iodine , Rhenium , Contrast Media , Humans , Phantoms, Imaging , X-Ray Microtomography , X-Rays
2.
J Control Release ; 317: 375-384, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31765705

ABSTRACT

Using lipid-based drug delivery systems (LbDDS) is an efficient strategy to enhance the low oral bioavailability of poorly water-soluble drugs. Here the oral absorption of fenofibrate (FF) from LbDDS in rats was investigated in pharmacokinetic, in vitro lipolysis, and SPECT/CT in vivo imaging studies. The investigated formulations were soybean oil solution (SBO), a mixture of soybean oil and monoacyl phosphatidylcholine (MAPC) (SBO-MAPC), self-nanoemulsifying drug delivery systems with and without MAPC (SNEDDS-MAPC and SNEDDS, respectively), and an aqueous suspension (SUSP) as a reference. Oral bioavailability of the LbDDS ranged from 27 to 35%. A two-step in vitro lipolysis model simulating rat gastro-intestinal digestion provided in vitro FF solubilisation data to understand oral absorption. During the in vitro lipolysis, most FF was undissolved for SUSP and distributed into the poorly dispersed oil phase for SBO. For the SNEDDS without MAPC, practically all FF solubilised into the aqueous phase during the dispersion and digestion. Adding MAPC to SBO enhanced the dispersion of the oil phase into the digestion media while adding MAPC to SNEDDS resulted in a distribution of 29% of FF into the oil phase at the beginning of in vitro lipolysis. FF distribution into both oil and aqueous phases explained the higher and prolonged oral absorption of LbDDS containing MAPC. To elucidate the relatively low bioavailability of all formulations, FF and triolein were labeled with 123I and 125I, respectively, to study the biodistribution of drug and lipid excipients in a dual isotope SPECT/CT in vivo imaging study. The concentration of radiolabeled drug as a function of time in the heart correlated to the plasma curves. A significant amount of radiolabeled drug and lipids (i.e., 28-59% and 24-60% of radiolabeled drug and lipids, respectively) was observed in the stomach at 24 h post administration, which can be linked to the low bioavailability of the formulations. The current study for the first time combined in vitro lipolysis and dual isotope in vivo imaging to find the root cause of different fenofibrate absorption profiles from LbDDS and an aqueous suspension.


Subject(s)
Fenofibrate , Administration, Oral , Animals , Biological Availability , Drug Delivery Systems , Emulsions , Lipolysis , Rats , Solubility , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
3.
Phys Med Biol ; 64(17): 175006, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31287093

ABSTRACT

177Lu-DOTATATE therapy has been shown to produce encouraging results in treatment of neuroendocrine tumours (NETs). Unfortunately, since dosimetry for radionuclide therapy is considered to be challenging, typically similar amount of radiopharmaceutical is administered to every patient. There is growing evidence that the efficacy of this therapy can be significantly improved by employing personalized protocols, based on the organ-at-risk dosimetry. The aim of this study is to propose a practical and accurate dosimetry protocol based on the simplified acquisition schedules. Data from fifty-three therapy cycles in thirty-nine NET patients were analyzed. Three SPECT/CT scans, acquired at 4 h (D0), 23 h (D1) and 70 h (D3) after injection, were performed. The kidney volume was determined using CT and the activity was determined from quantitative SPECT using an iterative thresholding method. For each dataset, four methods were used to model the time-activity-curves (TAC): M1-two trapezoid segments (0 to D0 and D0 to D1), followed by monoexponential fit to D1 + D3 data; M2-monoexponential fit to D0 + D1 + D3 data; M3 and M4-monoexponential fit to D0 + D3 and D1 + D3 data, respectively. Additionally, kidney doses obtained from single time point method using a monoexponential curve with the population mean effective half-life, normalized to activities at D0 or D1 or D3 points, were calculated. The accuracy of simplified dosimetry methods was assessed as the percentage difference relative to doses calculated from M1. The major contribution to the absorbed dose estimate comes from the area under the late time portion of the TAC (D1 to infinity). Therefore, information from the late scan (D3) is crucial for the determination of kidney absorbed doses. Single time point method using monoexponential TAC, with the population mean effective half-life normalized to the late data point (48-72 h for kidneys) produces <10% deviation in the absorbed dose estimation, thus is recommended for clinical use.


Subject(s)
Kidney Neoplasms/radiotherapy , Neuroendocrine Tumors/radiotherapy , Radiopharmaceuticals/therapeutic use , Radiotherapy Planning, Computer-Assisted/methods , Single Photon Emission Computed Tomography Computed Tomography , Female , Humans , Kidney Neoplasms/diagnostic imaging , Male , Neuroendocrine Tumors/diagnostic imaging , Octreotide/analogs & derivatives , Octreotide/therapeutic use , Organometallic Compounds/therapeutic use , Radiometry/methods , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/standards
4.
Theranostics ; 9(3): 868-883, 2019.
Article in English | MEDLINE | ID: mdl-30809314

ABSTRACT

A common form of treatment for patients with hepatocellular carcinoma (HCC) is transarterial radioembolization (TARE) with non-degradable glass or resin microspheres (MS) labeled with 90Y (90Y-MS). To further simplify the dosimetry calculations in the clinical setting, to have more control over the particle size and to change the permanent embolization to a temporary one, we developed uniformly-sized, biodegradable 188Re-labeled MS (188Re-MS) as a new and easily imageable TARE agent. Methods: MS made of poly(L-lactic acid) were produced in a flow focusing microchip. The MS were labeled with 188Re using a customized kit. An orthotopic HCC animal model was developed in male Sprague Dawley rats by injecting N1-S1 cells directly into the liver using ultrasound guidance. A suspension of 188Re-MS was administered via hepatic intra-arterial catheterization 2 weeks post-inoculation of the N1-S1 cells. The rats were imaged by SPECT 1, 24, 48, and 72 h post-radioembolization. Results: The spherical 188Re-MS had a diameter of 41.8 ± 6.0 µm (CV = 14.5%). The site and the depth of the injection of N1-S1 cells were controlled by visualization of the liver in sonograms. Single 0.5 g tumors were grown in all rats. 188Re-MS accumulated in the liver with no deposition in the lungs. 188Re decays to stable 188Os by emission of ߯ particles with similar energy to those emitted by 90Y while simultaneously emitting γ photons, which were imaged directly by single photon computed tomography (SPECT). Using Monte Carlo methods, the dose to the tumors was calculated to be 3-6 times larger than to the healthy liver tissue. Conclusions:188Re-MS have the potential to become the next generation of ߯-emitting MS for TARE. Future work revolves around the investigation of the therapeutic potential of 188Re-MS in a large-scale, long-term preclinical study as well as the evaluation of the clinical outcomes of using 188Re-MS with different sizes, from 20 to 50 µm.


Subject(s)
Carcinoma, Hepatocellular/therapy , Drug Carriers , Embolization, Therapeutic/methods , Microspheres , Radioisotopes/administration & dosage , Radiotherapy/methods , Rhenium/administration & dosage , Animals , Carcinoma, Hepatocellular/diagnosis , Disease Models, Animal , Humans , In Vivo Dosimetry/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/therapy , Polyesters , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...