Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(25): 10326-42, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27244471

ABSTRACT

[Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO (where py = pyridine) in acetone. The formulation of complex was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex . A spectrophotometric titration involving complex and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(ii) centre diminished the peak current at the Epc value of the Co(I/0) redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical (59)Co NMR spectroscopic data for the formation of Co(i) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(i) metal centre is more favourable than coordination to a cobalt(ii) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes and in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...