Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 49(11): 2327-2335, 2023 11.
Article in English | MEDLINE | ID: mdl-37550173

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a significant cause of diffuse liver disease, morbidity and mortality worldwide. Early and accurate diagnosis of NALFD is critical to identify patients at risk of disease progression. Liver biopsy is the current gold standard for diagnosis and prognosis. However, a non-invasive diagnostic tool is desired because of the high cost and risk of complications of tissue sampling. Medical ultrasound is a safe, inexpensive and widely available imaging tool for diagnosing NAFLD. Emerging sonographic tools to quantitatively estimate hepatic fat fraction, such as tissue sound speed estimation, are likely to improve diagnostic accuracy, precision and reproducibility compared with existing qualitative and semi-quantitative techniques. Various pulse-echo ultrasound speed of sound estimation methodologies have been investigated, and some have been recently commercialized. We review state-of-the-art in vivo speed of sound estimation techniques, including their advantages, limitations, technical sources of variability, biological confounders and existing commercial implementations. We report the expected range of hepatic speed of sound as a function of liver steatosis and fibrosis that may be encountered in clinical practice. Ongoing efforts seek to quantify sound speed measurement accuracy and precision to inform threshold development around meaningful differences in fat fraction and between sequential measurements.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/pathology , Reproducibility of Results , Ultrasonics , Liver/diagnostic imaging , Liver/pathology , Ultrasonography/methods , Magnetic Resonance Imaging
2.
J Ultrasound Med ; 42(11): 2567-2582, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37490582

ABSTRACT

OBJECTIVES: Here we report on the intra- and inter-operator variability of the backscatter coefficient (BSC) estimated with a new low-variance quantitative ultrasound (QUS) approach applied to breast lesions in vivo. METHODS: Radiofrequency (RF) echo signals were acquired from 29 BIRADS 4 and 5 breast lesions in 2 sequential cohorts following 2 imaging protocols: cohort 1) radial and antiradial views, and cohort 2) short- and long-axis views. Protocol 2 was implemented after retraining and discussion on how to improve reproducibility. Each patient was scanned by at least 2 of 3 radiologists; each performed 3 acquisitions with transducer and patient repositioning in between acquisitions. BSC was estimated using a low-variance QUS approach based on regularization. Intra- and inter-operator variability of the intra-lesion median BSC was evaluated with a multifactorial ANOVA test (P-values) and the intraclass correlation coefficient (ICC). RESULTS: Inter-operator variability was only significant in the first protocol (P < .007); ICCinter = .77 (95% CI .71-.82), indicating good inter-operator agreement. In the second protocol, the inter-operator variability was not significant (P > .05) and agreement was excellent (ICCinter = .92 [.89-.94]). In both protocols, the intra-operator variability was not significant. CONCLUSIONS: Our findings demonstrate the need for standardizing image acquisition protocols for backscatter-based QUS to reduce inter-operator variability and ensure its successful translation to the characterization of suspicious breast masses.

3.
Phys Rev E ; 102(4-1): 042609, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212683

ABSTRACT

We present a theoretical calculation of the changes in the Hamaker constant due to the anomalous reduction of the static dielectric function of water. Under confinement, the dielectric function of water decreases from a bulk value of 80 down to 2. If the confining walls are made of a dielectric material, the Hamaker constant reduces by almost 90%. However, if the confinement is realized with metallic plates, there is little change in the Hamaker constant. Additionally, we show that confinement can be used to decreases the Debye screening length without changing the salt concentration. This in turn is used to change the Hamaker constant in the presence of electrolytes.

4.
Ultramicroscopy ; 192: 80-84, 2018 09.
Article in English | MEDLINE | ID: mdl-29902688

ABSTRACT

The non-physical effects on the transverse momentum transfer from fast electrons to gold nanoparticles associated to the use of non-causal dielectric functions are studied. A direct test of the causality based on the surface Kramers-Kronig relations is presented. This test is applied to the different dielectric function used to describe gold nanostructures in electron microscopy.

5.
Proc Natl Acad Sci U S A ; 109(7): 2240-5, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22308436

ABSTRACT

We report that triangular gold nanoprisms in the presence of attractive depletion forces and repulsive electrostatic forces assemble into equilibrium one-dimensional lamellar crystals in solution with interparticle spacings greater than four times the thickness of the nanoprisms. Experimental and theoretical studies reveal that the anomalously large d spacings of the lamellar superlattices are due to a balance between depletion and electrostatic interactions, both of which arise from the surfactant cetyltrimethylammonium bromide. The effects of surfactant concentration, temperature, ionic strength of the solution, and prism edge length on the lattice parameters have been investigated and provide a variety of tools for in situ modulation of these colloidal superstructures. Additionally, we demonstrate a purification procedure based on our observations that can be used to efficiently separate triangular nanoprisms from spherical nanoparticles formed concomitantly during their synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...