Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 66(6): e0013222, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35607978

ABSTRACT

As a result of a high-throughput compound screening campaign using Mycobacterium tuberculosis-infected macrophages, a new drug candidate for the treatment of tuberculosis has been identified. GSK2556286 inhibits growth within human macrophages (50% inhibitory concentration [IC50] = 0.07 µM), is active against extracellular bacteria in cholesterol-containing culture medium, and exhibits no cross-resistance with known antitubercular drugs. In addition, it has shown efficacy in different mouse models of tuberculosis (TB) and has an adequate safety profile in two preclinical species. These features indicate a compound with a novel mode of action, although still not fully defined, that is effective against both multidrug-resistant (MDR) or extensively drug-resistant (XDR) and drug-sensitive (DS) M. tuberculosis with the potential to shorten the duration of treatment in novel combination drug regimens. (This study has been registered at ClinicalTrials.gov under identifier NCT04472897).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Macrophages , Mice , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
2.
Article in English | MEDLINE | ID: mdl-33139282

ABSTRACT

Phenotypic screening of inhibitors of the essential Mycobacterium tuberculosis FAS-II dehydratase HadAB led to the identification of GSK3011724A, a compound previously reported to inhibit the condensation step of FAS-II. Whole-cell-based and cell-free assays confirmed the lack of activity of GSK3011724A against the dehydratase despite evidence of cross-resistance between GSK3011724A and HadAB inhibitors. The nature of the resistance mechanisms is suggestive of alterations in the FAS-II interactome reducing access of GSK3011724A to KasA.


Subject(s)
Mycobacterium tuberculosis , Bacterial Proteins/genetics , Fatty Acid Synthase, Type II , Mycolic Acids
3.
FASEB Bioadv ; 2(10): 600-612, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33089076

ABSTRACT

BACKGROUND: Whole-cell phenotypic screening is the driving force behind modern anti-tubercular drug discovery efforts. Focus has shifted from screening for bactericidal scaffolds to screens incorporating target deconvolution. Target-based screening aims to direct drug discovery toward known effective targets and avoid investing resources into unproductive lines of enquiry. The protein synthesis pipeline, including RNA polymerase and the ribosome, is a clinically proven target in Mycobacterium tuberculosis. Screening for new hits of this effective target pathway is an invaluable tool in the drug discovery arsenal. METHODS: Using M. tuberculosis H37Rv augmented with anhydrotetracycline-inducible expression of mCherry, a phenotypic screen was developed for the identification of protein synthesis inhibitors in a medium throughput screening format. RESULTS: The assay was validated using known inhibitors of protein synthesis to show a dose-dependent reduction in mCherry fluorescence. This was expanded to a proprietary screen of hypothetical protein synthesis hits and modified to include quantitative viability measurement of cells using resazurin. CONCLUSION: Following the success of the proprietary screen, a larger scale screen of the GlaxoSmithKline anti-tubercular library containing 2799 compounds was conducted. Combined single shot and dose-response screening yielded 18 hits, 0.64% of all screened compounds.

4.
ACS Infect Dis ; 6(5): 1098-1109, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32196311

ABSTRACT

In the course of optimizing a novel indazole sulfonamide series that inhibits ß-ketoacyl-ACP synthase (KasA) of Mycobacterium tuberculosis, a mutagenic aniline metabolite was identified. Further lead optimization efforts were therefore dedicated to eliminating this critical liability by removing the embedded aniline moiety or modifying its steric or electronic environment. While the narrow SAR space against the target ultimately rendered this goal unsuccessful, key structural knowledge around the binding site of this underexplored target for TB was generated to inform future discovery efforts.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/antagonists & inhibitors , Aniline Compounds/pharmacology , Mycobacterium tuberculosis , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Binding Sites , DNA Damage , Mycobacterium tuberculosis/enzymology
5.
J Med Chem ; 61(24): 11327-11340, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30457865

ABSTRACT

Society urgently needs new, effective medicines for the treatment of tuberculosis. To kick-start the required hit-to-lead campaigns, the libraries of pharmaceutical companies have recently been evaluated for starting points. The GlaxoSmithKline (GSK) library yielded many high-quality hits, and the associated data were placed in the public domain to stimulate engagement by the wider community. One such series, the spiro compounds, are described here. The compounds were explored by a combination of traditional in-house research and open source methods. The series benefits from a particularly simple structure and a short associated synthetic chemistry route. Many members of the series displayed striking potency and low toxicity, and highly promising in vivo activity in a mouse model was confirmed with one of the analogues. Ultimately the series was discontinued due to concerns over safety, but the associated data remain public domain, empowering others to resume the series if the perceived deficiencies can be overcome.


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Tuberculosis/drug therapy , Administration, Intravenous , Administration, Oral , Animals , Antitubercular Agents/adverse effects , Biological Availability , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/antagonists & inhibitors , Female , Heart/drug effects , Humans , Maximum Tolerated Dose , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Rabbits
6.
Sci Rep ; 7(1): 9430, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842600

ABSTRACT

Drug discovery efforts against the pathogen Mycobacterium tuberculosis (Mtb) have been advanced through phenotypic screens of extensive compound libraries. Such a screen revealed sulfolane 1 and indoline-5-sulfonamides 2 and 3 as potent inhibitors of mycobacterial growth. Optimization in the sulfolane series led to compound 4, which has proven activity in an in vivo murine model of Mtb infection. Here we identify the target and mode of inhibition of these compounds based on whole genome sequencing of spontaneous resistant mutants, which identified mutations locating to the essential α- and ß-subunits of tryptophan synthase. Over-expression studies confirmed tryptophan synthase as the biological target. Biochemical techniques probed the mechanism of inhibition, revealing the mutant enzyme complex incurs a fitness cost but does not prevent inhibitor binding. Mapping of the resistance conferring mutations onto a low-resolution crystal structure of Mtb tryptophan synthase showed they locate to the interface between the α- and ß-subunits. The discovery of anti-tubercular agents inhibiting tryptophan synthase highlights the therapeutic potential of this enzyme and draws attention to the prospect of other amino acid biosynthetic pathways as future Mtb drug targets.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium/drug effects , Mycobacterium/enzymology , Tryptophan Synthase/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Models, Molecular , Mutation , Mycobacterium/genetics , Protein Conformation , Structure-Activity Relationship , Thiophenes/pharmacology , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism
7.
Sci Rep ; 6: 38986, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27982051

ABSTRACT

High-throughput phenotypic screens have re-emerged as screening tools in antibiotic discovery. The advent of such technologies has rapidly accelerated the identification of 'hit' compounds. A pre-requisite to medicinal chemistry optimisation programmes required to improve the drug-like properties of a 'hit' molecule is identification of its mode of action. Herein, we have combined phenotypic screening with a biased target-specific screen. The inosine monophosphate dehydrogenase (IMPDH) protein GuaB2 has been identified as a drugable target in Mycobacterium tuberculosis, however previously identified compounds lack the desired characteristics necessary for further development into lead-like molecules. This study has identified 7 new chemical series from a high-throughput resistance-based phenotypic screen using Mycobacterium bovis BCG over-expressing GuaB2. Hit compounds were identified in a single shot high-throughput screen, validated by dose response and subjected to further biochemical analysis. The compounds were also assessed using molecular docking experiments, providing a platform for their further optimisation using medicinal chemistry. This work demonstrates the versatility and potential of GuaB2 as an anti-tubercular drug target.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , IMP Dehydrogenase/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical , IMP Dehydrogenase/genetics , IMP Dehydrogenase/metabolism , Mycobacterium bovis/enzymology , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics
8.
PLoS One ; 8(4): e60933, 2013.
Article in English | MEDLINE | ID: mdl-23613759

ABSTRACT

Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. As part of our efforts towards the discovery of new anti-tubercular leads, a number of potent tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide (THPP) and N-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] (Spiro) analogues were recently identified against Mycobacterium tuberculosis and Mycobacterium bovis BCG through a high-throughput whole-cell screening campaign. Herein, we describe the attractive in vitro and in vivo anti-tubercular profiles of both lead series. The generation of M. tuberculosis spontaneous mutants and subsequent whole genome sequencing of several resistant mutants identified single mutations in the essential mmpL3 gene. This 'genetic phenotype' was further confirmed by a 'chemical phenotype', whereby M. bovis BCG treated with both the THPP and Spiro series resulted in the accumulation of trehalose monomycolate. In vivo efficacy evaluation of two optimized THPP and Spiro leads showed how the compounds were able to reduce >2 logs bacterial cfu counts in the lungs of infected mice.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Mycobacterium tuberculosis/drug effects , Pyrazoles/pharmacology , Spiro Compounds/pharmacology , Animals , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Bacterial Proteins/metabolism , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Chromatography, Thin Layer , Cord Factors , Disease Models, Animal , Dogs , Drug Resistance, Bacterial , Genotype , Hep G2 Cells , Humans , Kinetics , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mutation/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Rats , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/therapeutic use , Treatment Outcome , Tuberculosis/drug therapy , Tuberculosis/microbiology
9.
J Med Chem ; 54(15): 5540-61, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21696174

ABSTRACT

Drug therapy is the mainstay of antimalarial therapy, yet current drugs are threatened by the development of resistance. In an effort to identify new potential antimalarials, we have undertaken a lead optimization program around our previously identified triazolopyrimidine-based series of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. The X-ray structure of PfDHODH was used to inform the medicinal chemistry program allowing the identification of a potent and selective inhibitor (DSM265) that acts through DHODH inhibition to kill both sensitive and drug resistant strains of the parasite. This compound has similar potency to chloroquine in the humanized SCID mouse P. falciparum model, can be synthesized by a simple route, and rodent pharmacokinetic studies demonstrated it has excellent oral bioavailability, a long half-life and low clearance. These studies have identified the first candidate in the triazolopyrimidine series to meet previously established progression criteria for efficacy and ADME properties, justifying further development of this compound toward clinical candidate status.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrimidines/chemistry , Triazoles/chemistry , Animals , Antimalarials/chemical synthesis , Antimalarials/pharmacology , Chemical Phenomena , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Drug Resistance , Humans , Mice , Plasmodium falciparum/enzymology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Triazoles/pharmacology
11.
J Org Chem ; 73(16): 6401-4, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18610982

ABSTRACT

The different behavior of N-tosyl imines and N-(2-pyridyl)sulfonyl imines in Cu (II)-catalyzed AFCR is described. DFT theoretical calculations on the mode of coordination of the copper atom to both types of substrates allow understanding this different reactivity.

15.
J Org Chem ; 70(18): 7451-4, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-16122276

ABSTRACT

[reaction: see text] The enantioselective catalytic 1,4-addition to alpha,beta-unsaturated ketimines is an unprecedented process. Herein, we document the copper-catalyzed addition of dialkylzinc reagents to (2-pyridylsulfonyl)imines of chalcones. This process occurs rapidly in the presence of a chiral phosphoramidite ligand to afford exclusively the 1,4-addition product. In the case of addition of dimethylzinc, enantioselectivities in the range 70-80% ee are obtained. The presence of the metal-coordinating 2-pyridylsulfonyl group proved to be essential for this reaction to proceed.

16.
J Org Chem ; 68(21): 8120-8, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14535793

ABSTRACT

Nanometer-sized conjugated 1,4- and 1,3,5-ethynylphenyl oligomers were synthesized starting from 3,5-di(trimethylsilylethynyl)phenylacetylene and p-[3,5-di(trimethylsilylethynyl)-1-ethynylphenyl]phenyl acetylene by cross-coupling reaction with a convenient haloaryl derivative, catalyzed by palladium(II)/copper(I), in excellent yield. The terminal acetylenes were efficiently prepared by a specific protection-deprotection methodology. All ethynylphenyl homologues obtained show fluorescence emission, with the bathochromic shift of approximately 20 nm by each ethynylphenyl unit increasing the conjugate chain. Parallel conjugated ethynylphenyl chains were prepared through the insertion of a 1,5-naphthalene subunit, and the compounds exhibit fluorescence radiation emission.

SELECTION OF CITATIONS
SEARCH DETAIL
...