Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mot Behav ; 56(2): 150-160, 2024.
Article in English | MEDLINE | ID: mdl-38170961

ABSTRACT

The sense of force can be assessed using a force reproduction task (FRT), which consists of matching a target force with visual feedback (TARGET phase) and reproducing it without visual feedback (REPRODUCTION phase). We investigated the relevance of muscle proprioception during the TARGET phase (EXP1) and the influence of the sensory source used for the force feedback (EXP2). Accordingly, EXP1 compared the force reproduction error (RE) between trials with (LV) and without (NoLV) local tendon vibration applied on the first dorsal interosseous during the TARGET phase, while EXP2 compared RE between trials performed with visual (VISIO) or auditory (AUDIO) feedback. The FRT was performed with the index finger at 5% and 20% of the maximal force (MVC). RE was greater with LV compared with NoLV at 5% (p = 0.004) but not 20% MVC (p = 0.65). The involvement of muscle proprioception in RFT was further supported by the increase in RE with LV frequency (supplementary experiment). RE was greater for VISIO than AUDIO at 5% (p < 0.001) but not 20% MVC (p = 0.054). This study evidences the relevance of proprioceptive inputs during the target PHASE and the influence of the force feedback modality on RE, and thereby on the assessment of the sense of force.


Subject(s)
Muscle, Skeletal , Proprioception , Humans , Muscle, Skeletal/physiology , Feedback , Proprioception/physiology , Feedback, Sensory/physiology , Vibration
2.
Article in English | MEDLINE | ID: mdl-38082591

ABSTRACT

High-Density Surface Electromyography (HD-sEMG) is a non-invasive technique for measuring the electrical activity of a muscle with multiple, closely spaced electrodes. Estimation of muscle force is one of the applications of HD-sEMG. Usually, validating different EMG-Force models entails simple movements limited to laboratory settings. The validity of these models in more ecological conditions, requesting force production over a wide frequency band, remains unknown. In this study, we, therefore, compare the results of force prediction using four different types of input force profiles that can be representative of daily life activities, and we investigate whether the crest factor of these different input signals affects force prediction. For predicting the force from sEMG signals, we used our real-time and convex methods. HD-sEMG signals were recorded with 144 channels from the biceps brachii, brachioradialis, and triceps (long, lateral, and medial head) muscles of 24 healthy subjects during random signal, random phase, Schroeder phase, and minimum crest factor (crestmin) signal. The correlation and coefficient of determination (R2) between measured and predicted forces were calculated for the different force feedback profiles. The crestmin signal showed significantly better results based on statistical tests (P-value < 0.05), with correlation and R2 equal to 0.92±0.03 and 0.86±0.05, respectively. The results demonstrate that the crest factor of input signals is a crucial parameter that can impact the performance of EMG-Force models and must be considered during training.Clinical Relevance- This study demonstrates that lower crest factor multisine force profiles result in improved fitness for force prediction and can be used as an alternative to random signals.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Humans , Isometric Contraction/physiology , Muscle, Skeletal/physiology , Electromyography/methods , Arm/physiology , Elbow
3.
Exp Brain Res ; 240(3): 941-951, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35089392

ABSTRACT

The sense of force is suggested to rely in part on proprioceptive inputs when assessed with a force reproduction task. The age-related alterations in proprioceptive system could, therefore, alter the sense of force. This study investigated the effects of tendon vibration on a force reproduction task performed with the wrist flexors in 18 young (20-40 year) and 18 older adults (60-90 year). Participants matched a target force (5% or 20% of their maximal force) with visual feedback of the force produced (target phase), and reproduced the target force without visual feedback (reproduction phase) after a 5-s rest period with or without vibration. The force reproduction error was expressed as the ratio between the force produced during the reproduction and the target phases. For the trials with vibration, the error was expressed as the ratio between the force produced during the reproduction phase performed with and without vibration. Tactile acuity was assessed with a two-point discrimination test. The error was greater at 5% than at 20% contraction intensity (p < 0.001), and in older [56.5 (32.2)%; mean (SD)] than in young adults [33.5 (13.6)%] at 5% (p = 0.002) but not 20% target (p = 0.46). Tendon vibration had a greater effect at 5% than 20% contraction intensity, and in older [41.7 (32.4)%, p < 0.001] than young adults [20.0 (16.1)%]. Tactile acuity was lesser in older than young adults (p < 0.001). The results support the contribution of proprioception in the sense of force, and highlight a decrease in performance with ageing restricted to low-force contractions.


Subject(s)
Vibration , Wrist , Aged , Electromyography , Humans , Muscle, Skeletal , Proprioception , Reproduction , Tendons , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...