Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 30(4): 497-507, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17324235

ABSTRACT

HKT-type transporters appear to play key roles in Na(+) accumulation and salt sensitivity in plants. In Arabidopsis HKT1;1 has been proposed to influx Na(+) into roots, recirculate Na(+) in the phloem and control root : shoot allocation of Na(+). We tested these hypotheses using (22)Na(+) flux measurements and ion accumulation assays in an hkt1;1 mutant and demonstrated that AtHKT1;1 contributes to the control of both root accumulation of Na(+) and retrieval of Na(+) from the xylem, but is not involved in root influx or recirculation in the phloem. Mathematical modelling indicated that the effects of the hkt1;1 mutation on root accumulation and xylem retrieval were independent. Although AtHKT1;1 has been implicated in regulation of K(+) transport and the hkt1;1 mutant showed altered net K(+) accumulation, (86)Rb(+) uptake was unaffected by the hkt1;1 mutation. The hkt1;1 mutation has been shown previously to rescue growth of the sos1 mutant on low K(+); however, HKT1;1 knockout did not alter K(+) or (86)Rb(+) accumulation in sos1.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Cation Transport Proteins/physiology , Ion Transport/physiology , Sodium/metabolism , Symporters/physiology , Xylem/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cation Transport Proteins/genetics , Hydroponics , Models, Biological , Mutation , Plant Roots/metabolism , Potassium/metabolism , Sodium-Hydrogen Exchangers/physiology , Symporters/genetics , Vacuoles/metabolism
2.
Planta ; 219(1): 167-75, 2004 May.
Article in English | MEDLINE | ID: mdl-14767768

ABSTRACT

The effect of glutamate on plant plasma membrane cation transport was studied in roots of Arabidopsis thaliana (L.) Heynh. Patch-clamp experiments using root protoplasts, (22)Na(+) unidirectional fluxes into intact roots and measurements of cytosolic Ca(2+) activity using plants expressing cytosolically-targeted aequorin in specific cell types were carried out. It was demonstrated that low-millimolar concentrations of glutamate activate within seconds both Na(+) and Ca(2+) currents in patch-clamped protoplasts derived from roots. The probability of observing glutamate-activated currents increased with increasing glutamate concentration (up to 29% at 3 mM); half-maximal activation was seen at 0.2-0.5 mM glutamate. Glutamate-activated currents were voltage-insensitive, 'instantaneous' (completely activated within 2-3 ms of a change in voltage) and non-selective for monovalent cations (Na(+), Cs(+) and K(+)). They also allowed the permeation of Ca(2+). Half-maximal Na(+) currents occurred at 20-30 mM Na(+). Glutamate-activated currents were sensitive to non-specific blockers of cation channels (quinine, La(3+), Gd(3+)). Although low-millimolar concentrations of glutamate did not usually stimulate unidirectional influx of (22)Na(+) into intact roots, they reliably caused an increase in cytosolic Ca(2+) activity in protoplasts isolated from the roots of aequorin-transformed Arabidopsis plants. The response of cytosolic Ca(2+) activity revealed a two-phase development, with a rapid large transient increase (lasting minutes) and a prolonged subsequent stage (lasting hours). Use of plants expressing aequorin in specific cell types within the root suggested that the cell types most sensitive to glutamate were in the mature epidermis and cortex. The functional significance of these glutamate-activated currents for both cation uptake into plants and cell signaling remains the subject of speculation, requiring more knowledge about the dynamics of apoplastic glutamate in plants.


Subject(s)
Arabidopsis/metabolism , Calcium/metabolism , Cations , Cell Membrane/metabolism , Glutamates/metabolism , Plant Roots/cytology , Sodium/metabolism , Aequorin/metabolism , Arabidopsis/cytology , Cytosol/metabolism , Ion Transport , Patch-Clamp Techniques , Protoplasts/cytology , Protoplasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...