Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 765: 142768, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33097260

ABSTRACT

Transport of nutrients to lakes can occur via surface-water inflow, atmospheric deposition, groundwater (GW) inflow and benthic processes. Identifying and quantifying within-lake nutrient sources and recycling processes is challenging. Prior studies in hypereutrophic Upper Klamath Lake, Oregon, USA, indicated that ~60% of the early summer phosphorus (P) load to the lake was internal and hypothesized to be lakebed sediment release. Dynamic nutrient transport processes were examined to better characterize the nutrient sources. One-dimensional heat transport models calibrated to observed lakebed temperatures and a cross-sectional GW flow model provided estimates of GW-inflow rates that were greatest in spring and decreased through summer. One-dimensional solute transport models calibrated to observed lakebed pore-water dissolved silica (Si) and dissolved phosphate-phosphorus (DP) concentrations indicated that nutrients were transported from the lakebed by advection, diffusion, and enhanced mixing by benthic organisms and waves, and that DP removal occurred near the lakebed interface. Estimated water, Si, DP and total-phosphorus (TP) budgets indicated that GW contributed 21% of lake water inflow and at least 26, 20 and 16% of total Si, DP and TP inflow, respectively, when conservatively assuming background GW nutrient concentrations. However, lakebed GW (LGW) is enriched in nutrients during flow through lakebed sediment and the estimated GW contribution increased to 29 (33), 49 (67) and 43% (61%) of total Si, DP and TP inflow, respectively, if 20% (50%) of GW inflow to the lake was assumed to have LGW concentrations. Net nutrient inflow to the lake was greatest in spring and coincident with the annual diatom bloom. Inflowing dissolved nutrients appear to be assimilated by diatoms during the spring and become available for the summer Aphanizomenon flos-aquae bloom when the diatoms senesce. Thus, nutrient-enriched GW inflow and nutrient recycling by successive algal blooms must be considered when evaluating internal nutrient loading to lakes.


Subject(s)
Groundwater , Lakes , Aphanizomenon , China , Cross-Sectional Studies , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Nutrients , Oregon , Phosphorus/analysis
2.
Sci Total Environ ; 599-600: 581-596, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28494284

ABSTRACT

Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.

3.
J Environ Qual ; 45(5): 1616-1626, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27695767

ABSTRACT

Surplus nitrogen (N) estimates, principal component analysis (PCA), and end-member mixing analysis (EMMA) were used in a multisite comparison contrasting the fate of N in diverse agricultural watersheds. We applied PCA-EMMA in 10 watersheds located in Indiana, Iowa, Maryland, Nebraska, Mississippi, and Washington ranging in size from 5 to 1254 km with four nested watersheds. Watershed Surplus N was determined by subtracting estimates of crop uptake and volatilization from estimates of N input from atmospheric deposition, plant fixation, fertilizer, and manure for the period from 1987 to 2004. Watershed average Surplus N ranged from 11 to 52 kg N ha and from 9 to 32% of N input. Solute concentrations in streams, overland runoff, tile drainage, groundwater (GW), streambeds, and the unsaturated zone were used in the PCA-EMMA procedure to identify independent components contributing to observed stream concentration variability and the end-members contributing to streamflow and NO load. End-members included dilute runoff, agricultural runoff, benthic-processing, tile drainage, and oxic and anoxic GW. Surplus N was larger in watersheds with more permeable soils (Washington, Nebraska, and Maryland) that allowed greater infiltration, and oxic GW was the primary source of NO load. Subsurface transport of NO in these watersheds resulted in some removal of Surplus N by denitrification. In less permeable watersheds (Iowa, Indiana, and Mississippi), NO was rapidly transported to the stream by tile drainage and runoff with little removal. Evidence of streambed removal of NO by benthic diatoms was observed in the larger watersheds.


Subject(s)
Agriculture , Nitrogen/analysis , Water Quality , Iowa , Mississippi , Water Movements
4.
Ground Water ; 49(5): 706-26, 2011.
Article in English | MEDLINE | ID: mdl-20015222

ABSTRACT

The fate of hydrocarbons in the subsurface near Bemidji, Minnesota, has been investigated by a multidisciplinary group of scientists for over a quarter century. Research at Bemidji has involved extensive investigations of multiphase flow and transport, volatilization, dissolution, geochemical interactions, microbial populations, and biodegradation with the goal of providing an improved understanding of the natural processes limiting the extent of hydrocarbon contamination. A considerable volume of oil remains in the subsurface today despite 30 years of natural attenuation and 5 years of pump-and-skim remediation. Studies at Bemidji were among the first to document the importance of anaerobic biodegradation processes for hydrocarbon removal and remediation by natural attenuation. Spatial variability of hydraulic properties was observed to influence subsurface oil and water flow, vapor diffusion, and the progression of biodegradation. Pore-scale capillary pressure-saturation hysteresis and the presence of fine-grained sediments impeded oil flow, causing entrapment and relatively large residual oil saturations. Hydrocarbon attenuation and plume extent was a function of groundwater flow, compound-specific volatilization, dissolution and biodegradation rates, and availability of electron acceptors. Simulation of hydrocarbon fate and transport affirmed concepts developed from field observations, and provided estimates of field-scale reaction rates and hydrocarbon mass balance. Long-term field studies at Bemidji have illustrated that the fate of hydrocarbons evolves with time, and a snap-shot study of a hydrocarbon plume may not provide information that is of relevance to the long-term behavior of the plume during natural attenuation.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Models, Theoretical , Petroleum , Water Pollutants, Chemical/analysis , Minnesota
5.
J Contam Hydrol ; 111(1-4): 48-64, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20060615

ABSTRACT

Benzene and alkylbenzene biodegradation rates and patterns were measured using an in situ microcosm in a crude-oil contaminated aquifer near Bemidji, Minnesota. Benzene-D6, toluene, ethylbenzene, o-, m- and p-xylenes and four pairs of C(3)- and C(4)-benzenes were added to an in situ microcosm and studied over a 3-year period. The microcosm allowed for a mass-balance approach and quantification of hydrocarbon biodegradation rates within a well-defined iron-reducing zone of the anoxic plume. Among the BTEX compounds, the apparent order of persistence is ethylbenzene > benzene > m,p-xylenes > o-xylene >or= toluene. Threshold concentrations were observed for several compounds in the in situ microcosm, below which degradation was not observed, even after hundreds of days. In addition, long lag times were observed before the onset of degradation of benzene or ethylbenzene. The isomer-specific degradation patterns were compared to observations from a multi-year study conducted using data collected from monitoring wells along a flowpath in the contaminant plume. The data were fit with both first-order and Michaelis-Menten models. First-order kinetics provided a good fit for hydrocarbons with starting concentrations below 1mg/L and Michaelis-Menten kinetics were a better fit when starting concentrations were above 1mg/L, as was the case for benzene. The biodegradation rate data from this study were also compared to rates from other investigations reported in the literature.


Subject(s)
Environmental Monitoring/methods , Hydrocarbons, Aromatic/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Hydrocarbons, Aromatic/chemistry , Soil Pollutants/metabolism , Water Pollutants, Chemical/chemistry
6.
Environ Toxicol Chem ; 28(3): 516-24, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18980391

ABSTRACT

Three collecting trips were coordinated in April, May, and August 2006 to sample the water column and benthos of hypereutrophic Upper Klamath Lake (OR, USA) through the annual cyanophyte bloom of Aphanizomenon flos-aquae. A pore-water profiler was designed and fabricated to obtain the first high-resolution (centimeter-scale) estimates of the vertical concentration gradients of macro- and micronutrients for diffusive-flux determinations. A consistently positive benthic flux for soluble reactive phosphorus (SRP) was observed with solute release from the sediment, ranging between 0.4 and 6.1 mg/m(2)/d. The mass flux over an approximate 200-km(2) lake area was comparable in magnitude to riverine inputs. An additional concern related to fish toxicity was identified when dissolved ammonium also displayed consistently positive benthic fluxes of 4 to 134 mg/m(2)/d, again comparable to riverine inputs. Although phosphorus was a logical initial choice by water quality managers for the limiting nutrient when nitrogen-fixing cyanophytes dominate, initial trace-element results from the lake and major inflowing tributaries suggested that the role of iron limitation on primary productivity should be investigated. Dissolved iron became depleted in the lake water column during the course of the algal bloom, while dissolved ammonium and SRP increased. Elevated macroinvertebrate densities, at least of the order of 10(4) individuals/m(2), suggested that the diffusive-flux estimates may be significantly enhanced by bioturbation. In addition, heat-flux modeling indicated that groundwater advection of nutrients could also significantly contribute to internal nutrient loading. Accurate environmental assessments of lentic systems and reasonable expectations for point-source management require quantitative consideration of internal solute sources.


Subject(s)
Eutrophication , Fresh Water/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/chemistry , Oregon
7.
J Environ Qual ; 37(3): 1010-23, 2008.
Article in English | MEDLINE | ID: mdl-18453424

ABSTRACT

Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed.


Subject(s)
Fresh Water , Hot Temperature , United States
8.
J Contam Hydrol ; 67(1-4): 269-99, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14607480

ABSTRACT

The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a stationary oil body, we simulated benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) concentrations in the oil and ground water, respectively, as well as dissolved oxygen. Dissolution from the oil phase and aerobic and anaerobic degradation processes were represented. The parameters estimated were the recharge rate, hydraulic conductivity, dissolution rate coefficient, individual first-order BTEX anaerobic degradation rates, and transverse dispersivity. Results were similar for simulations obtained using several alternative conceptual models of the hydrologic system and biodegradation processes. The dissolved BTEX concentration data were not sufficient to discriminate between these conceptual models. The calibrated simulations reproduced the general large-scale evolution of the plume, but did not reproduce the observed small-scale spatial and temporal variability in concentrations. The estimated anaerobic biodegradation rates for toluene and o-xylene were greater than the dissolution rate coefficient. However, the estimated anaerobic biodegradation rates for benzene, ethylbenzene, and m,p-xylene were less than the dissolution rate coefficient. The calibrated model was used to determine the BTEX mass balance in the oil body and groundwater plume. Dissolution from the oil body was greatest for compounds with large effective solubilities (benzene) and with large degradation rates (toluene and o-xylene). Anaerobic degradation removed 77% of the BTEX that dissolved into the water phase and aerobic degradation removed 17%. Although goodness-of-fit measures for the alternative conceptual models were not significantly different, predictions made with the models were quite variable.


Subject(s)
Benzene Derivatives/metabolism , Benzene/metabolism , Models, Theoretical , Petroleum/metabolism , Toluene/metabolism , Xylenes/metabolism , Benzene/chemistry , Benzene Derivatives/chemistry , Biodegradation, Environmental , Environmental Monitoring , Minnesota , Soil Microbiology , Solubility , Toluene/chemistry , Xylenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...