Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharm Dev Technol ; 29(4): 371-382, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613468

ABSTRACT

Baicalin (BG), a natural product, has been used in the prevention and treatment of drug-induced liver injury (DILI); however, its poor solubility and extensive liver metabolism limit its pharmacological use. The aim of the present study was the formulation of fast-dissolving freeze-dried sublingual tablets (FFSTs) to increase BG dissolution, avoid first-pass metabolism, and overcome swallowing difficulties. FFSTs were prepared following a 23 factorial design. The effect of three independent variables namely matrix former, Maltodextrin, concentration (4%, and 6%), binder concentration (2%, and 3%), and binder type (Methocel E5, and Methocel E15) on the FFSTs' in-vitro disintegration time and percentage dissolution was studied along with other tablet characteristics. Differential scanning calorimetry, scanning electron microscopy, in-vitro HepG2 cell viability assay, and in-vivo characterization were also performed. F8 (6% Maltodextrin, 2% Mannitol, 2% Methocel E5), with desirability of 0.852, has been furtherly enhanced using 1%PEG (F10). F10 has achieved an in-vitro disintegration time of 41 secs, and 60.83% in-vitro dissolution after 2 min. Cell viability assay, in-vivo study in rats, and histopathological studies confirmed that pretreatment with F10 has achieved a significant hepatoprotective effect against acetaminophen-induced hepatotoxicity. The outcome of this study demonstrated that FFSTs may present a patient-friendly dosage form against DILI.


Subject(s)
Cell Survival , Chemical and Drug Induced Liver Injury , Flavonoids , Freeze Drying , Solubility , Tablets , Animals , Flavonoids/administration & dosage , Flavonoids/pharmacology , Flavonoids/chemistry , Cell Survival/drug effects , Humans , Rats , Hep G2 Cells , Freeze Drying/methods , Male , Administration, Sublingual , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Protective Agents/pharmacology , Protective Agents/administration & dosage , Liver/drug effects , Liver/metabolism , Rats, Wistar
2.
Int Immunopharmacol ; 128: 111481, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38232534

ABSTRACT

Clemastine (CLM) is repurposed to enhance remyelination in multiple sclerosis (MS) patients. CLM blocks histamine and muscarinic receptors as negative regulators to oligodendrocyte differentiation. These receptors are linked to the canonical and non-canonical Notch-1 signaling via specific ligands; Jagged-1 and F3/Contactin-1, respectively. Yet, there are no previous studies showing the influence of CLM on Notch entities. Herein, the study aimed to investigate to which extent CLM aligns to one of the two Notch-1 arms in experimental autoimmune encephalomyelitis (EAE) rat model. Three groups were utilized where first group received vehicles. The second group was injected by spinal cord homogenate mixed with complete Freund's adjuvant on days 0 and 7. In the third group, CLM (5 mg/kg/day; p.o) was administered for 15 days starting from the day of the first immunization. CLM ameliorated EAE-associated motor and gripping impairment in rotarod, open-field, and grip strength arena beside sensory anomalies in hot plate, cold allodynia, and mechanical Randall-Selitto tests. Additionally, CLM alleviated depressive mood observed in tail suspension test. These findings harmonized with histopathological examinations of Luxol-fast blue stain together with enhanced immunostaining of myelin basic protein and oligodendrocyte lineage gene 2 in corpus callosum and spinal cord. Additionally, CLM enhanced oligodendrocyte myelination and maturation by increasing 2',3'-cyclic nucleotide 3'-phosphodiesterase, proteolipid protein, aspartoacylase as well. CLM restored the level of F3/Contactin-1 in the diseased rats over Jagged-1 level; the ligand of the canonical pathway. This was accompanied by elevated gene expression of Deltex-1 and reduced hairy and enhancer-of-split homologs 1 and 5. Additionally, CLM suppressed microglial and astrocyte activation via reducing the expression of ionized calcium-binding adaptor molecule-1 as well as glial fibrillary acidic protein, respectively. These results outlined the remyelinating beneficence of CLM which could be due to augmenting the non-canonical Notch-1 signaling over the canonical one.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Humans , Rats , Animals , Jagged-1 Protein , Clemastine , Contactin 1 , Receptors, Notch , Models, Theoretical
3.
Food Funct ; 14(20): 9265-9278, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37767889

ABSTRACT

Depression is a widespread neuropsychiatric illness whose etiology is yet mysterious. Lactoferrin (LF), an iron-binding glycoprotein, is reported to promote neuroprotection through its role in the modulation of oxidative stress and inflammation. The objective of the present research was to evaluate the efficacy of LF against chronic restraint stress (CRS)-induced depressive behavior in rats. Depression was evidenced by a reduced grooming time in the splash test and an increased immobility time in the tail suspension test (TST) and forced swimming test (FST). This effect was also accompanied by reduced GSH and serotonin levels and elevated lipid peroxidation and corticosterone levels in the hippocampus. Additionally, an exaggerated hippocampal inflammatory response was also shown by a rise in NF-κB (p65) and TNF-α levels and a reduced IL-10 level. Moreover, CRS substantially reduced the BDNF content as well as the protein levels of PI3K, Akt, and mTOR while boosting the GSK3ß content. Interestingly, LF therapy significantly improved CRS-induced behavioral and biochemical aberrations, an effect which was suppressed upon pretreatment with LY294002 (PI3K inhibitor). This suggests that the antidepressant potential of LF may be mediated through the modulation of the PI3K/Akt/mTOR signaling pathway. Furthermore, LF succeeded in restoring 5-HT and corticosterone levels, diminishing oxidative stress and ameliorating the inflammatory cascades. Therefore, and for the first time, LF might serve as a promising antidepressant drug through targeting the PI3K/Akt/mTOR pathway.

4.
Biomed Pharmacother ; 166: 115309, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573656

ABSTRACT

Osteoarthritis (OA) is a common debilitating degenerative disease of the elderly. We aimed to study the therapeutic effects of combining curcumin and swimming in monosodium iodoacetate (MIA)-induced OA in a rat model. The rats were divided into 5 groups (n = 9). Group 1 received saline and served as a control group. Groups 2-5 were injected intra-articularly in the right knee with 100 µL MIA. One week later, groups 3 and 5 were started on daily swimming sessions that gradually increased to 20-mins per session, and for groups 4 and 5, oral curcumin was administered at a dose of 200 mg/kg for 4 weeks. The combination therapy (curcumin + swimming) showed the most effective results in alleviating pain and joint stiffness as well as improving histological and radiological osteoarthritis manifestations in the knee joints. The combination modality also reduced serum C-reactive protein and tissue cartilage oligomeric matrix protein levels. Mechanistically, rats received dual treatment exhibited restoration of miR-130a and HDAC3 expression. The dual treatment also upregulated PPAR-γ alongside downregulation of NF-κB and its inflammatory cytokine targets TNF-α and IL-1ß. Additionally, there was downregulation of MMP1 and MMP13 in the treated rats. In conclusion, our data showed that there is a therapeutic potential for combining curcumin with swimming in OA, which is attributed, at least in part, to the modulation of miR-130a/HDAC3/PPAR-γ signaling axis.


Subject(s)
Cartilage, Articular , Curcumin , MicroRNAs , Osteoarthritis , Rats , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Curcumin/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Swimming , Cartilage, Articular/metabolism , Disease Models, Animal , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Iodoacetic Acid/adverse effects , Iodoacetic Acid/metabolism , MicroRNAs/metabolism
5.
Inflammopharmacology ; 31(5): 2701-2717, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37598127

ABSTRACT

The prominence of autophagy in the modulation of neurodegenerative disorders has sparked interest to investigate its stimulation in Alzheimer's disease (AD). Nobiletin possesses several bioactivities such as anti-inflammation, antioxidation, and neuroprotection. Consequently, the study's aim was to inspect the possible neurotherapeutic impact of Nobiletin in damping AD through autophagy regulation. Mice were randomly assigned into: Group I which received DMSO, Groups II, III, and IV obtained STZ (3 mg/kg) intracerebroventricularly once with Nobiletin (50 mg/kg/day; i.p.) in Group III and Nobiletin with EX-527 (2 mg/kg, i.p.) in Group IV. Interestingly, Nobiletin ameliorated STZ-induced AD through enhancing the motor performance and repressing memory defects. Moreover, Nobiletin de-escalated hippocampal acetylcholinesterase (AChE) activity and enhanced acetylcholine level while halting BACE1 and amyloid-ß levels. Meanwhile, Nobiletin stimulated the autophagy process through activating the SIRT1/FoxO3a, LC3B-II, and ATG7 pathway. Additionally, Nobiletin inhibited Akt pathway and controlled the level of NF-κB and TNF-α. Nobiletin amended the oxidative stress through enhancing GSH and cutting down MDA levels. However, EX527, SIRT1 inhibitor, counteracted the neurotherapeutic effects of Nobiletin. Therefore, the present study provides a strong verification for the therapeutic influence of Nobiletin in AD. This outcome may be assigned to autophagy stimulation through SIRT1/FoxO3a, inhibiting AChE activity, reducing neuroinflammation and oxidative stress.


Subject(s)
Alzheimer Disease , Citrus , Mice , Animals , Flavonoids/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/therapeutic use , Citrus/metabolism , Sirtuin 1/metabolism , Acetylcholinesterase , Aspartic Acid Endopeptidases/therapeutic use , Autophagy , Disease Models, Animal
6.
ACS Chem Neurosci ; 14(11): 2035-2048, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37196197

ABSTRACT

Patients with hyperthyroidism are commonly diagnosed with mood disorders. Naringin, (4',5,7-trihydrocyflavanone-7-O-rhamnoglucoside), a natural bioflavonoid, has many neurobehavioral activities including anxiolytic and antidepressant properties. The role of Wingless (Wnt) signaling in psychiatric disorders is considered substantial but debatable. Recently, regulation of Wnt signaling by naringin has been reported in different disorders. Therefore, the present study aimed to investigate the possible role of Wnt/GSK-3ß/ß-catenin signaling in hyperthyroidism-induced mood disturbances and explore the therapeutic effects of naringin. Hyperthyroidism was induced in rats by intraperitoneal injection of 0.3 mg/kg levothyroxine for 2 weeks. Naringin was orally administered to rats with hyperthyroidism at a dose of 50 or 100 mg/kg for 2 weeks. Hyperthyroidism induced mood alterations as revealed by behavioral tests and histopathological changes including marked necrosis and vacuolation of neurons in the hippocampus and cerebellum. Intriguingly, hyperthyroidism activated Wnt/p-GSK-3ß/ß-catenin/DICER1/miR-124 signaling pathway in the hippocampus along with an elevation in serotonin, dopamine, and noradrenaline contents and a reduction in brain-derived neurotrophic factor (BDNF) content. Additionally, hyperthyroidism induced upregulation of cyclin D-1 expression, malondialdehyde (MDA) elevation, and glutathione (GSH) reduction. Naringin treatment alleviated behavioral and histopathological alterations and reversed hyperthyroidism-induced biochemical changes. In conclusion, this study revealed, for the first time, that hyperthyroidism could affect mental status by stimulating Wnt/p-GSK-3ß/ß-catenin signaling in the hippocampus. The observed beneficial effects of naringin could be attributed to increasing hippocampal BDNF, controlling the expression of Wnt/p-GSK-3ß/ß-catenin signaling as well as its antioxidant properties.


Subject(s)
MicroRNAs , Wnt Signaling Pathway , Rats , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Brain-Derived Neurotrophic Factor/metabolism , beta Catenin/metabolism
7.
Neuropharmacology ; 236: 109575, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37201650

ABSTRACT

Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.


Subject(s)
HMGB1 Protein , Hepatic Encephalopathy , Animals , Rats , Ammonia/metabolism , Hepatic Encephalopathy/chemically induced , Hepatic Encephalopathy/drug therapy , HMGB1 Protein/metabolism , Lactoferrin/metabolism , Liver , Myeloid Differentiation Factor 88/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats, Wistar , Thioacetamide/toxicity , Toll-Like Receptor 4/metabolism
8.
Life Sci ; 322: 121645, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37001804

ABSTRACT

Benign prostatic hyperplasia (BPH) is a prevalent illness in older adults. It is well-recognized that testosterone is essential in the onset of BPH. Vildagliptin (Vilda), a dipeptidyl peptidase-IV inhibitor, has been shown to have anti-inflammatory and antioxidant effects. In this study, we studied the effects of vildagliptin on testosterone-induced BPH in rats and its underlying mechanisms. Forty male Wistar rats were allocated into four groups (n = 10): CTRL, Vilda, BPH, and BPH + Vilda groups. Our results revealed that vildagliptin treatment considerably lessened the prostate weight, prostate index, serum levels of prostate-specific antigen, 5α-reductase activity, and DHT levels compared to the testosterone group. Furthermore, vildagliptin treatment inhibited the expression of HMGB1, PI3K/Akt/NF-κB, and TNF-α signaling pathways in the prostate tissue of diseased rats. Additionally, vildagliptin treatment increased the expression of Nrf-2 and HO-1, reduced GSH levels, and lowered MDA levels. Besides, vildagliptin noticeably scaled up the level of cleaved caspase-3 enzyme and, conversely, the protein expression of proliferating cell nuclear antigen (PCNA). Correspondingly, vildagliptin counteracts testosterone-induced histological irregularities in rats' prostates. These findings suggest that vildagliptin may be a potential prophylactic approach to avoid BPH.


Subject(s)
HMGB1 Protein , Prostatic Hyperplasia , Humans , Rats , Male , Animals , Prostatic Hyperplasia/chemically induced , Prostatic Hyperplasia/drug therapy , Testosterone/metabolism , Prostate/pathology , NF-kappa B/metabolism , Vildagliptin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , HMGB1 Protein/metabolism , Hyperplasia/pathology , Rats, Sprague-Dawley , Rats, Wistar , Plant Extracts/pharmacology , Signal Transduction
9.
Int Immunopharmacol ; 116: 109841, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36764270

ABSTRACT

Ulcerative colitis (UC) is a persistent inflammatory bowel disease (IBD) that is regarded as a risk factor for cognitive impairment. Donepezil (DON), a centrally acting acetylcholinesterase inhibitor (AChEI), is approved for the management of Alzheimer's disease (AD). We aimed to scrutinize the impact of DON on acetic acid (AA)-induced UC in rats and to evaluate its ability to attenuate inflammatory response, oxidative strain, and apoptosis in this model and its associated cognitive deficits. Rats were categorized into: normal, DON, AA, and AA + DON groups. DON (5 mg/kg/day) was administered orally for 14 days either alone or beginning with the day of UC induction. Colitis was evoked by a single transrectal injection of 1 ml of 4 % acetic acid. Results revealed that DON significantly improved the behavioral abnormalities with the mitigation of inflammation, apoptosis, and histopathological changes in the hippocampi of the colitis group. Moreover, DON significantly alleviated the macroscopic and microscopic changes associated with colitis. Interestingly, DON inhibited pro-inflammatory cytokines via suppression of AA-induced activation of nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) in the colon, along with serum IL-1ß. DON inhibited colon lipid peroxidation, restored the antioxidants with a significant amelioration of the degree of neutrophil infiltration, and repressed colitis-induced matrix metalloproteinases-9 (MMP-9) production. Furthermore, DON decreased the Bax/Bcl-2 ratio and caspase-3 protein expressions. Eventually, in lipopolysaccharide (LPS)-treated RAW 264.7 macrophage cells, DON suppressed nitric oxide (NO) release, demonstrating the ability of DON to significantly curtail inflammation in immune cells. Taken together, DON ameliorated experimental colitis and its linked cognitive dysfunction, possibly via its antioxidant effect and modulation of pro-inflammatory cytokines and apoptosis. Thereby, DON could be a therapeutic nominee for UC and associated neurological disorders.


Subject(s)
Cognitive Dysfunction , Colitis, Ulcerative , Colitis , Rats , Animals , Donepezil/therapeutic use , Donepezil/pharmacology , Acetic Acid/metabolism , Acetylcholinesterase/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colon/pathology , Antioxidants/pharmacology , Cytokines/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Oxidative Stress , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
10.
Chem Biol Interact ; 372: 110366, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36706892

ABSTRACT

Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.


Subject(s)
Parkinson Disease , Rats , Animals , Dopamine and cAMP-Regulated Phosphoprotein 32/pharmacology , Rotenone/toxicity , Dopamine/metabolism , Signal Transduction , Phosphoproteins
11.
Front Pharmacol ; 13: 840478, 2022.
Article in English | MEDLINE | ID: mdl-35281911

ABSTRACT

Ethnopharmacological relevance: Since ancient times, Hibiscus sabdariffa L. calyces have been used as a folk remedy for the treatment of hypertension. However, it is questionable as to whether there is a difference in the antihypertensive activity of the hot or cold aqueous extracts. Aim of the study: We designed this study to specify the best method for water extraction of the antihypertensive metabolites of H. sabdariffa and to confirm their in vivo antihypertensive capabilities. Materials and methods: The powdered dried calyces of H. sabdariffa were independently extracted with cold and hot water. A comparative study was performed between the cold and hot aqueous extracts of H. sabdariffa based on evaluation of the in vitro renin and angiotensin-converting enzyme (ACE) inhibition activities. Additionally, both extracts were subjected to an in vivo study for the evaluation of their antihypertensive activities in L-Nw-Nitro arginine methyl ester (L-NAME)-induced hypertensive rats. Further, a metabolomics study was also performed for both extracts to identify their chemical constituents. Results: The cold and hot extracts significantly reduced the angiotensin II, ACE, and aldosterone levels in the plasma. Furthermore, in the myocardium and aorta, decreased iNOS (inducible nitric oxide synthase) levels and elevated eNOS (endothelial nitric oxide synthase), as well as the rise in plasma NO levels, were reported with both extracts, but better results were displayed with the hot extract, leading to a potential antihypertensive effect. Additionally, the cold and hot Hibiscus extracts induced a cardioprotective effect through reducing necrosis, inflammation, and vacuolization that results from the induction of hypertension, an effect that was more prominent with the hot extract. Moreover, a comprehensive metabolomics approach using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was able to trace the metabolites in each extraction. Conclusion: The extracts showed different anthocyanin and phenolic compounds, but the hot extract showed higher contents of specific phenolics to which the superior antihypertensive and cardioprotective activities could be related.

12.
J Biochem Mol Toxicol ; 35(11): e22899, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34435724

ABSTRACT

Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. Lutein (LU) possesses numerous pharmacological activities, including anti-inflammatory, antioxidant, and antiapoptotic effects. This study aimed to investigate the cardioprotective potential of LU in isoprenaline (ISO)-induced MI and to explore its molecular mechanisms of action. AMI was induced by two consecutive subcutaneous doses of ISO (65 mg/kg; s.c.). The LU group was pretreated with LU (20 mg/kg; p.o.) for 30 days followed by ISO injections on Days 29 and 30. ISO group showed elevated serum creatine kinas-MB (CK-MB) and considerable electrocardiographic changes along with reduced ejection fraction compared to the normal group. LU pretreatment could decrease serum CK-MB activity, normalize QRS and QTc intervals and restore ejection fraction compared to the untreated group. The ISO group demonstrated infarcted-like lesions, which were ameliorated in the LU-pretreated group. Immunohistochemical investigation revealed upregulated cardiac troponin T (cTn T) and desmin expressions in the LU-pretreated group. LU pretreatment also enhanced cardiac thioredoxin (Trx) and glutathione (GSH) contents as well as reduced lipid peroxidation, compared to the untreated group. Importantly, LU pretreatment could downregulate long noncoding MI associated transcript (lncRNA MIAT) and thioredoxin-interacting protein (TXNIP) and augment micro RNA (miR)-200a and nuclear factor erythroid 2-related factor 2 (Nrf2) expressions compared to the ISO group. Moreover, a significant inverse correlation between MIAT and miR-200a was observed. In conclusion, this study revealed that LU could ameliorate ISO-induced MI in rats by modulating MIAT/miR-200a/Nrf2 pathway.


Subject(s)
Isoproterenol/toxicity , Lutein/pharmacology , Myocardial Infarction/chemically induced , Signal Transduction , Animals , Cardiotonic Agents/pharmacology , Disease Models, Animal , MicroRNAs/metabolism , Myocardial Infarction/metabolism , NF-E2-Related Factor 2/metabolism , RNA, Long Noncoding/metabolism , Rats
13.
Life Sci ; 222: 245-254, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30858122

ABSTRACT

BACKGROUND: Phosphodiestrase (PDE) enzymes are suggested to play a leading role in fibrogenesis of liver where studies showed the possible implication of PDE 1 & 4 in liver injury proposing them as possible targets for treating liver fibrosis. AIM: The present study was designed to investigate, for the first time, the possible therapeutic effects of selective inhibitors of PDE-1 (vinpocetine) and PDE-4 (roflumilast) in liver fibrosis induced by diethylnitrosamine (DEN) in rats. MAIN METHODS: Rats were given DEN (100 mg/kg, i.p.) once weekly for 6 weeks to induce liver fibrosis. Vinpocetine (10 mg/kg/day) or roflumilast (0.5 mg/kg/day) was then orally administered for 2 weeks. KEY FINDINGS: Vinpocetine significantly suppressed the contents of hydroxyproline, transforming growth factor-beta 1 (TGF-ß1), nuclear factor-kappa B (NF-κB) whereas roflumilast normalized them. Moreover, tumor necrosis factor-alpha (TNF-α) content and protein expressions of toll-like receptor 4 (TLR4) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were markedly decreased whereas cAMP response element binding (CREB) protein expression was significantly elevated by both treatments. Additionally, vinpocetine and roflumilast up-regulated the gene expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) receptor where roflumilast showed better results. PDE1 and 4 activities were inhibited by vinpocetine and roflumilast, respectively. The superior results offered by roflumilast could be related to the higher cAMP level obtained relative to vinpocetine. SIGNIFICANCE: Our study manifested the up-regulation of PDE enzymes (1 & 4) in liver fibrosis and addressed the therapeutic role of vinpocetine and roflumilast as PDEIs through a cAMP-mediated TLR4 inflammatory and fibrogenic signaling pathways.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 1/metabolism , Liver Cirrhosis/metabolism , Phosphodiesterase 4 Inhibitors/therapeutic use , Toll-Like Receptor 4/metabolism , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 1/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclopropanes/pharmacology , Cyclopropanes/therapeutic use , Liver Cirrhosis/drug therapy , Male , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology , Vinca Alkaloids/pharmacology , Vinca Alkaloids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...