Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1339303, 2023.
Article in English | MEDLINE | ID: mdl-38293553

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningitis in >152,000 immunocompromised individuals annually, leading to 112,000 yearly deaths. The four classes of existing antifungal agents target plasma membrane sterols (ergosterol), nucleic acid synthesis, and cell wall synthesis. Existing drugs are not highly effective against Cryptococcus, and antifungal drug resistance is an increasing problem. A novel antimicrobial compound, a eumelanin-inspired indoylenepheyleneethynylene, EIPE-1, was synthesized and has antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MSRA), but not towards Gram-negative organisms. Based on EIPE-1's antibacterial activity, we hypothesized that EIPE-1 could have antifungal activity. For these studies, we tested EIPE-1 against C. neoformans strain H99 and 6 additional cryptococcal clinical isolates. We examined antifungal activity, cytotoxicity, effects on fungal gene expression, and mechanism of action of EIPE-1. Results showed that EIPE-1 has fungicidal effects on seven cryptococcal strains with MICs ranging from 1.56 to 3.125 µg/mL depending on the strain, and it is non-toxic to mammalian cells. We conducted scanning and transmission electron microscopy on the exposed cells to examine structural changes to the organism following EIPE-1 treatment. Cells exposed displayed structural changes to their cell wall and membranes, with internal contents leaking out of the cells. To understand the effect of EIPE-1 on fungal gene expression, RNA sequencing was conducted. Results showed that EIPE-1 affects several processes involved stress response, ergosterol biosynthesis, capsule biosynthesis, and cell wall attachment and remodeling. Therefore, our studies demonstrate that EIPE-1 has antifungal activity against C. neoformans, which affects both cellular structure and gene expression of multiple fungal pathways involved in cell membrane stability and viability.

2.
ACS Appl Bio Mater ; 5(2): 545-551, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35113537

ABSTRACT

The reliance on antibiotics and antimicrobials to treat bacterial infectious diseases is threatened by the emergence of antibiotic resistance and multi-drug-resistant organisms, thus having the potential to greatly impact human health. Thus, the discovery and development of antimicrobials capable of acting on antibiotic-resistant bacteria is a major area of significance in scientific research. Herein, we present the development of a eumelanin-inspired antimicrobial capable of killing methicillin-resistant Staphylococcus aureus (MRSA). By ligating quaternary ammonium-functionalized "arms" to a eumelanin-inspired indole with intrinsic antimicrobial activity, an antimicrobial agent with enhanced activity was prepared. This resulting antimicrobial, EIPE-1, had a minimum inhibitory concentration of 16 µg/mL (17.1 µM) against a clinical isolate of MRSA obtained from an adult cystic fibrosis patient. The biocidal activity occurred within 30 min of exposure and resulted in changes to the bacterial cell surface as visualized with a scanning electron microscope. Taken together, these studies demonstrate that EIPE-1 is effective at killing MRSA.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Adult , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Microbial , Humans , Microbial Sensitivity Tests
3.
Bioorg Med Chem Lett ; 30(21): 127511, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32853682

ABSTRACT

Antagonists for the serotonin receptor 2B (5-HT2B) have clinical applications towards migraine, anxiety, irritable bowl syndrome, and MDMA abuse; however, few selective 5-HT2B antagonists have been identified. Previous studies from these labs identified a natural product, 5-hydroxy-2-(2-phenylethyl)chromone (5-HPEC, 2) as the first non-nitrogenous ligand for the 5-HT2B receptor. Studies on 5-HPEC optimization led to the identification of 5-hydroxy-2-(3-phenylpropyl)chromone (5-HPPC, 3), which showed a tenfold improvement in binding affinity over 2 at 5-HT2B. This study aimed to further improve receptor pharmacology of this unique scaffold. Guided by molecular modeling studies modifications at the C-3' and C-4' positions of 3 were made to probe their effects on ligand binding affinity and efficacy. Among the derivatives synthesized 5-hydroxy-2-(3-(3-cyanophenyl)propyl)chromone (5-HCPC, 3d) showed the most promise with a multifold improvement in binding affinity (pKi = 7.1 ± 0.07) over 3 with retained antagonism.


Subject(s)
Chromones/pharmacology , Receptor, Serotonin, 5-HT2B/metabolism , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...