Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(1)2024 01 10.
Article in English | MEDLINE | ID: mdl-38254974

ABSTRACT

DNA-protein crosslinks (DPCs) represent a unique and complex form of DNA damage formed by covalent attachment of proteins to DNA. DPCs are formed through a variety of mechanisms and can significantly impede essential cellular processes such as transcription and replication. For this reason, anti-cancer drugs that form DPCs have proven effective in cancer therapy. While cells rely on numerous different processes to remove DPCs, the molecular mechanisms responsible for orchestrating these processes remain obscure. Having this insight could potentially be harnessed therapeutically to improve clinical outcomes in the battle against cancer. In this review, we describe the ways cells enzymatically process DPCs. These processing events include direct reversal of the DPC via hydrolysis, nuclease digestion of the DNA backbone to delete the DPC and surrounding DNA, proteolytic processing of the crosslinked protein, as well as covalent modification of the DNA-crosslinked proteins with ubiquitin, SUMO, and Poly(ADP) Ribose (PAR).


Subject(s)
DNA Damage , Ubiquitin , Endonucleases , Hydrolysis , Proteolysis
2.
Sci Transl Med ; 10(438)2018 04 25.
Article in English | MEDLINE | ID: mdl-29695454

ABSTRACT

Successful drug treatment for tuberculosis (TB) depends on the unique contributions of its component drugs. Drug resistance poses a threat to the efficacy of individual drugs and the regimens to which they contribute. Biologically and chemically validated targets capable of replacing individual components of current TB chemotherapy are a major unmet need in TB drug development. We demonstrate that chemical inhibition of the bacterial biotin protein ligase (BPL) with the inhibitor Bio-AMS (5'-[N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine) killed Mycobacterium tuberculosis (Mtb), the bacterial pathogen causing TB. We also show that genetic silencing of BPL eliminated the pathogen efficiently from mice during acute and chronic infection with Mtb Partial chemical inactivation of BPL increased the potency of two first-line drugs, rifampicin and ethambutol, and genetic interference with protein biotinylation accelerated clearance of Mtb from mouse lungs and spleens by rifampicin. These studies validate BPL as a potential drug target that could serve as an alternate frontline target in the development of new drugs against Mtb.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Tuberculosis/metabolism , Animals , Biotinylation/drug effects , Female , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Sulfurtransferases/metabolism , Tuberculosis/drug therapy
3.
SLAS Discov ; 22(2): 176-186, 2017 02.
Article in English | MEDLINE | ID: mdl-27760856

ABSTRACT

Using time-resolved fluorescence resonance energy transfer (FRET), we have developed and validated the first high-throughput screening (HTS) method to discover compounds that modulate an intracellular Ca2+ channel, the ryanodine receptor (RyR), for therapeutic applications. Intracellular Ca2+ regulation is critical for striated muscle function, and RyR is a central player. At resting [Ca2+], an increased propensity of channel opening due to RyR dysregulation is associated with severe cardiac and skeletal myopathies, diabetes, and neurological disorders. This leaky state of the RyR is an attractive target for pharmacological agents to treat such pathologies. Our FRET-based HTS detects RyR binding of accessory proteins calmodulin (CaM) or FKBP12.6. Under conditions that mimic a pathological state, we carried out a screen of the 727-compound NIH Clinical Collection, which yielded six compounds that reproducibly changed FRET by >3 SD. Dose-response of FRET and [3H]ryanodine binding readouts reveal that five hits reproducibly alter RyR1 structure and activity. One compound increased FRET and inhibited RyR1, which was only significant at nM [Ca2+], and accentuated without CaM present. These properties characterize a compound that could mitigate RyR1 leak. An excellent Z' factor and the tight correlation between structural and functional readouts validate this first HTS method to identify RyR modulators.


Subject(s)
Calmodulin/metabolism , Nervous System Diseases/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Tacrolimus Binding Proteins/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Calmodulin/chemistry , Fluorescence Resonance Energy Transfer , Humans , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Nervous System Diseases/genetics , Nervous System Diseases/pathology , Protein Binding , Ryanodine/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...