Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 111(5): 2053-2058, 2018 09 26.
Article in English | MEDLINE | ID: mdl-29982739

ABSTRACT

Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are a considerable threat to cereal and vegetable production in the Pacific Northwest and Intermountain regions of the United States. As insecticides are generally ineffective, alternative controls are needed to improve wireworm management. Wireworms are continuously exposed to a wide range of subterranean pathogenic organisms in the soil; identifying these organisms and determining their impact would contribute to the development of biological control for wireworms. Here, we evaluated the efficacy of an entomopathogenic nematode, Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and a fungus, Metarhizium brunneum Petch (strain F52) (Hypocreales: Clavicipitaceae), for control of the Pacific Northwest predominant wireworm species Limonius californicus, in two different soil media. We also examined whether diatomaceous earth (DE) increases the efficacy of entomopathogens through facilitating their penetration into the host integument. Treatments containing M. brunneum (F52) resulted in the highest rates of wireworm mortality, indicating that the fungus may be more effective than the nematode at reducing population size. However, results were impacted by soil media. In peatmoss-dominated medium, M. brunneum-containing treatments were more effective in reducing feeding damage than treatments containing S. carpocapsae. However, in sand-dominated medium, treatments with S. carpocapsae provided relatively better seedling protection. No consistent effect of DE was detected. Our results suggest that the effectiveness of wireworm biological control agents depends on soil media, such that the application of biological control against wireworms must be made with knowledge of field soil type.


Subject(s)
Coleoptera , Metarhizium/physiology , Pest Control, Biological , Rhabditida/physiology , Soil , Animals , Biomass , Diatomaceous Earth , Germination , Larva , Triticum
2.
Sci Rep ; 6: 39629, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004758

ABSTRACT

Across many ecosystems, increases in species biodiversity generally results in greater resource acquisition by consumers. Few studies examining the impacts of consumer diversity on resource capture have focused on terrestrial herbivores, however, especially taxa that feed belowground. Here we conducted field mesocosm experiments to examine the effects of variation in species richness and composition within a community of wireworm herbivores on wheat plant productivity. Our experiments involved wireworm communities consisting of between one and three species, with all possible combinations of species represented. We found that the presence of wireworms reduced plant biomass and seed viability, but wireworm species richness did not impact these plant metrics. Species identity effects were strong, as two species, Limonius californicus and Selatosomus pruininus, had significantly stronger impacts on plants compared to L. infuscatus. Communities with either of the two most impactful species consistently had the greatest impact on wheat plants. The effects of wireworms were thus strongly dependent on the particular species present rather than the overall diversity of the wireworm community. More broadly, our study supports the general finding that the identity of particular consumer species within communities often has greater impacts on ecosystem functioning than species richness.


Subject(s)
Biodiversity , Coleoptera/physiology , Herbivory , Magnoliopsida , Triticum , Animals , Biomass , Food Chain , Larva , Seasons , Seeds , Species Specificity
3.
J Econ Entomol ; 108(4): 1786-94, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26470320

ABSTRACT

Soil-dwelling insects are severe pests in many agroecosystems. These pests have cryptic life cycles, making sampling difficult and damage hard to anticipate. The management of soil insects is therefore often based on preventative insecticides applied at planting or cultural practices. Wireworms, the subterranean larvae of click beetles (Coleoptera: Elateridae), have re-emerged as problematic pests in cereal crops in the Pacific Northwestern United States. Here, we evaluated two management strategies for wireworms in long-term field experiments: 1) treating spring wheat seed with the neonicotinoid thiamethoxam and 2) replacing continuous spring wheat with a summer fallow and winter wheat rotation. Separate experiments were conducted for two wireworm species--Limonius californicus (Mannerheim) and Limonius infuscatus (Motschulsky). In the experiment with L. californicus, spring wheat yields and economic returns increased by 24-30% with neonicotinoid treatments. In contrast, in the experiment with L. infuscatus, spring wheat yields and economic returns did not increase with neonicotinoids despite an 80% reduction in wireworms. Thus, the usefulness of seed-applied neonicotinoids differed based on the wireworm species present. In experiments with both species, we detected significantly fewer wireworms with a no-till summer fallow and winter wheat rotation compared with continuous spring wheat. This suggests that switching from continuous spring wheat to a winter wheat and summer fallow rotation may aid in wireworm management. More generally, our results show that integrated management of soil-dwelling pests such as wireworms may require both preventative insecticide treatments and cultural practices.


Subject(s)
Agriculture/methods , Coleoptera , Insect Control , Insecticides , Larva , Nitro Compounds , Oxazines , Thiazoles , Triticum/growth & development , Animals , Coleoptera/growth & development , Neonicotinoids , Species Specificity , Thiamethoxam , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...