Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(27): e2401180, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38618946

ABSTRACT

Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect.

2.
Nano Lett ; 23(22): 10311-10316, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37917923

ABSTRACT

Diamond's unique properties on the nanoscale make it one of the most important materials for use in biosensors and quantum computing and for components that can withstand the harsh environments of space. We synthesize oriented, faceted diamond particles by flash laser heating of glassy carbon at 16 GPa and 2300 K. Detailed transmission electron microscopy shows them to consist of a mosaic of diamond nanocrystals frequently joined at twin boundaries forming microtwins. Striking 3-fold translational periodicity was observed in both imaging and diffraction. This periodicity was shown to originate from nanodimensional wedge-shaped overlapping regions of twinned diamond and not from a possible 9R polytype, which has also been reported in other group IVa elements and water ice. Extended bilayers of hexagonal layer stacking were observed, forming lonsdaleite nanolaminates. The particles exhibited optical fluorescence with a rapid quench time (<1 ns) attributed to their unique twinned microstructure.

3.
ACS Nano ; 17(15): 15065-15076, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37449797

ABSTRACT

Integrated, on-chip lasers are vital building blocks in future optoelectronic and nanophotonic circuitry. Specifically, III-V materials that are of technological relevance have attracted considerable attention. However, traditional microcavity laser fabrication techniques, including top-down etching and bottom-up catalytic growth, often result in undesirable cavity geometries with poor scalability and reproducibility. Here, we utilize the selective area epitaxy method to deterministically engineer thousands of microring lasers on a single chip. Specifically, we realize a catalyst-free, epitaxial growth of a technologically critical material, InAsP/InP, in a ring-like cavity with embedded multi-quantum-well heterostructures. We elucidate a detailed growth mechanism and leverage the capability to deterministically control the adatom diffusion lengths on selected crystal facets to reproducibly achieve ultrasmooth cavity sidewalls. The engineered devices exhibit a tunable emission wavelength in the telecommunication O-band and show low-threshold lasing with over 80% device efficacy across the chip. Our work marks a significant milestone toward the implementation of a fully integrated III-V materials platform for next-generation high-density integrated photonic and optoelectronic circuits.

4.
Ultramicroscopy ; 243: 113627, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36327791

ABSTRACT

Scanning transmission electron microscopy (STEM) has a broad range of applications in materials characterization, including real-space imaging, spectroscopy, and diffraction, at length scales from the micron to sub-Ångström. The recent development and adoption of high-speed, direct electron STEM detectors has enabled diffraction patterns to be collected at each probe position, generating four-dimensional STEM (4D-STEM) datasets and opening new imaging modalities. However, the limited pixel numbers in these detectors enforce a tradeoff between angular resolution and maximum collection angle. In this paper, we describe a straightforward method for quantifying 4D-STEM data by utilizing the full flux of the electron beam, including electrons scattered beyond the limits of the detector. This enables significantly increased experimental flexibility, including the synthesis of quantitative, high-contrast complementary annular dark field (cADF) STEM images from low-angle diffraction patterns whilst maintaining high angular resolution; as well as the optimization of electron dose and the more effective use of low dynamic range detectors.

5.
Nano Lett ; 19(5): 3169-3175, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30935207

ABSTRACT

Skyrmion imaging and electrical detection via topological Hall (TH) effect are two primary techniques for probing magnetic skyrmions, which hold promise for next-generation magnetic storage. However, these two kinds of complementary techniques have rarely been employed to investigate the same samples. We report the observation of nanoscale skyrmions in SrIrO3/SrRuO3 (SIO/SRO) bilayers in a wide temperature range from 10 to 100 K. The SIO/SRO bilayers exhibit a remarkable TH effect, which is up to 200% larger than the anomalous Hall (AH) effect at 5 K, and zero-field TH effect at 90 K. Using variable-temperature, high-field magnetic force microscopy (MFM), we imaged skyrmions as small as 10 nm, which emerge in the same field ranges as the TH effect. These results reveal a rich space for skyrmion exploration and tunability in oxide heterostructures.

6.
Nat Commun ; 8(1): 234, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28794430

ABSTRACT

Low-damping magnetic materials have been widely used in microwave and spintronic applications because of their low energy loss and high sensitivity. While the Gilbert damping constant can reach 10-4 to 10-5 in some insulating ferromagnets, metallic ferromagnets generally have larger damping due to magnon scattering by conduction electrons. Meanwhile, low-damping metallic ferromagnets are desired for charge-based spintronic devices. Here, we report the growth of Co25Fe75 epitaxial films with excellent crystalline quality evident by the clear Laue oscillations and exceptionally narrow rocking curve in the X-ray diffraction scans as well as from scanning transmission electron microscopy. Remarkably, the Co25Fe75 epitaxial films exhibit a damping constant <1.4 × 10-3, which is comparable to the values for some high-quality Y3Fe5O12 films. This record low damping for metallic ferromagnets offers new opportunities for charge-based applications such as spin-transfer-torque-induced switching and magnetic oscillations.Owing to their conductivity, low-damping metallic ferromagnets are preferred to insulating ferromagnets in charge-based spintronic devices, but are not yet well developed. Here the authors achieve low magnetic damping in CoFe epitaxial films which is comparable to conventional insulating ferromagnetic YIG films.

SELECTION OF CITATIONS
SEARCH DETAIL
...