Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 7: 75, 2020.
Article in English | MEDLINE | ID: mdl-33501242

ABSTRACT

Bioinspired and biomimetic soft machines rely on functions and working principles that have been abstracted from biology but that have evolved over 3.5 billion years. So far, few examples from the huge pool of natural models have been examined and transferred to technical applications. Like living organisms, subsequent generations of soft machines will autonomously respond, sense, and adapt to the environment. Plants as concept generators remain relatively unexplored in biomimetic approaches to robotics and related technologies, despite being able to grow, and continuously adapt in response to environmental stimuli. In this research review, we highlight recent developments in plant-inspired soft machine systems based on movement principles. We focus on inspirations taken from fast active movements in the carnivorous Venus flytrap (Dionaea muscipula) and compare current developments in artificial Venus flytraps with their biological role model. The advantages and disadvantages of current systems are also analyzed and discussed, and a new state-of-the-art autonomous system is derived. Incorporation of the basic structural and functional principles of the Venus flytrap into novel autonomous applications in the field of robotics not only will inspire further plant-inspired biomimetic developments but might also advance contemporary plant-inspired robots, leading to fully autonomous systems utilizing bioinspired working concepts.

2.
R Soc Open Sci ; 4(9): 170591, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28989762

ABSTRACT

Moisture-harvesting lizards, such as the Australian thorny devil Moloch horridus, have remarkable adaptations for inhabiting arid regions. Their microstructured skin surface, with channels in between overlapping scales, enables them to collect water by capillarity and passively transport it to the mouth for ingestion. We characterized this capillary water transport for live thorny devils using high-speed video analyses. Comparison with preserved specimens showed that live lizards are required for detailed studies of skin water transport. For thorny devils, there was no directionality in cutaneous water transport (unlike Phrynosoma) as 7 µl water droplets applied to the skin were transported radially over more than 9.2 mm. We calculated the total capillary volume as 5.76 µl cm-2 (dorsal) and 4.45 µl cm-2 (ventral), which is reduced to 50% filling by the time transportation ceases. Using micro-computed tomography and scanning electron microscopy of shed skin to investigate capillary morphology, we found that the channels are hierarchically structured as a large channel between the scales that is sub-divided by protrusions into smaller sub-capillaries. The large channel quickly absorbs water whereas the sub-capillary structure extends the transport distance by about 39% and potentially reduces the water volume required for drinking. An adapted dynamics function, which closely reflects the channel morphology, includes that ecological role.

3.
J Exp Biol ; 219(Pt 21): 3473-3479, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27807218

ABSTRACT

Moisture-harvesting lizards, such as the Australian thorny devil, Moloch horridus, have the remarkable ability to inhabit arid regions. Special skin structures, comprising a micro-structured surface with capillary channels in between imbricate overlapping scales, enable the lizard to collect water by capillarity and transport it to the mouth for ingestion. The ecological role of this mechanism is the acquisition of water from various possible sources such as rainfall, puddles, dew, condensation on the skin, or absorption from moist sand, and we evaluate here the potential of these various sources for water uptake by M. horridus The water volume required to fill the skin capillary system is 3.19% of body mass. Thorny devils standing in water can fill their capillary system and then drink from this water, at approximately 0.7 µl per jaw movement. Thorny devils standing on nearly saturated moist sand could only fill the capillary channels to 59% of their capacity, and did not drink. However, placing moist sand on skin replicas showed that the capillary channels could be filled from moist sand when assisted by gravity, suggesting that their field behaviour of shovelling moist sand onto the dorsal skin might fill the capillary channels and enable drinking. Condensation facilitated by thermal disequilibrium between a cool thorny devil and warm moist air provided skin capillary filling to approximately 0.22% of body weight, which was insufficient for drinking. Our results suggest that rain and moist sand seem to be ecologically likely water sources for M. horridus on a regular basis.


Subject(s)
Lizards/physiology , Skin/metabolism , Water/metabolism , Animals , Behavior, Animal/physiology , Soil , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...