Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38375937

ABSTRACT

CONTEXT: Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE: We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN: In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed OXPHOS protein expression and mtDNA content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS: We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION: The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are lower in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.

2.
Front Endocrinol (Lausanne) ; 14: 1205799, 2023.
Article in English | MEDLINE | ID: mdl-37455922

ABSTRACT

Introduction: Upper and lower body fat accumulation poses an opposing obesity-related cardiometabolic disease risk. Depot-differences in subcutaneous adipose tissue (SAT) function may underlie these associations. We aimed to investigate the inflammatory signatures of abdominal (ABD) and femoral (FEM) SAT in postmenopausal women with normal weight or obesity. Methods: We included 23 postmenopausal women with normal weight (n = 13) or obesity (n = 10). In vivo secretion of adipokines from ABD and FEM SAT was measured using the arterio-venous balance technique. Adipokine gene expression and adipocyte morphology were examined in ABD and FEM SAT. Furthermore, adipokine expression and secretion were investigated in vitro using differentiated human primary ABD and FEM subcutaneous adipocytes derived from the study participants. Results: Plasma leptin and plasminogen activator inhibitor (PAI)-1 concentrations were higher, and ABD and FEM adipocytes were larger in women with obesity than normal weight. No differences in adipocyte size and blood flow were apparent between ABD and FEM SAT. We found significant release of leptin and monocyte chemoattractant protein (MCP)-1 from ABD and FEM SAT, with higher fractional release of MCP-1 from ABD than FEM SAT. Gene expression of leptin, PAI-1, and tumor necrosis factor-α was lower in ABD than FEM SAT and higher in women with obesity than normal weight. In ABD adipocytes, interleukin-6, PAI-1, and leptin gene expression were higher, while adiponectin and dipeptidyl-peptidase-4 gene expression were lower than in FEM adipocytes. Finally, ABD adipocytes secreted less MCP-1 compared to FEM adipocytes. Discussion: These findings demonstrate that upper and lower body SAT and adipocytes are characterized by distinct inflammatory signatures in postmenopausal women, which seem independent of adipocyte size.


Subject(s)
Leptin , Plasminogen Activator Inhibitor 1 , Humans , Female , Leptin/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Obesity/metabolism , Adipokines/metabolism
3.
Cells ; 11(22)2022 11 08.
Article in English | MEDLINE | ID: mdl-36428961

ABSTRACT

Adipose tissue (AT) inflammation may increase obesity-related cardiometabolic complications. Altered AT oxygen partial pressure (pO2) may impact the adipocyte inflammatory phenotype. Here, we investigated the effects of physiological pO2 levels on the inflammatory phenotype of abdominal (ABD) and femoral (FEM) adipocytes derived from postmenopausal women with normal weight (NW) or obesity (OB). Biopsies were collected from ABD and FEM subcutaneous AT in eighteen postmenopausal women (aged 50-65 years) with NW (BMI 18-25 kg/m2, n = 9) or OB (BMI 30-40 kg/m2, n = 9). We compared the effects of prolonged exposure to different physiological pO2 levels on adipokine expression and secretion in differentiated human multipotent adipose-derived stem cells. Low physiological pO2 (5% O2) significantly increased leptin gene expression/secretion in ABD and FEM adipocytes derived from individuals with NW and OB compared with high physiological pO2 (10% O2) and standard laboratory conditions (21% O2). Gene expression/secretion of IL-6, DPP-4, and MCP-1 was reduced in differentiated ABD and FEM adipocytes from individuals with OB but not NW following exposure to low compared with high physiological pO2 levels. Low physiological pO2 decreases gene expression and secretion of several proinflammatory factors in ABD and FEM adipocytes derived from individuals with OB but not NW.


Subject(s)
Adipokines , Oxygen , Humans , Female , Adipokines/metabolism , Oxygen/metabolism , Adipocytes/metabolism , Obesity/metabolism , Adipose Tissue/metabolism
4.
Front Endocrinol (Lausanne) ; 12: 659928, 2021.
Article in English | MEDLINE | ID: mdl-34220709

ABSTRACT

Our recent in vivo human studies showed that colonic administration of sodium acetate (SA) resulted in increased circulating acetate levels, which was accompanied by increments in whole-body fat oxidation in overweight-obese men. Since skeletal muscle has a major role in whole-body fat oxidation, we aimed to investigate effects of SA on fat oxidation and underlying mechanisms in human primary skeletal muscle cells (HSkMC). We investigated the dose (0-5 mmol/L) and time (1, 4, 20, and 24 h) effect of SA on complete and incomplete endogenous and exogenous oxidation of 14C-labeled palmitate in HSkMC derived from a lean insulin sensitive male donor. Both physiological (0.1 and 0.25 mmol/L) and supraphysiological (0.5, 1 and 5 mmol/L) concentrations of SA neither increased endogenous nor exogenous fat oxidation over time in HSkMC. In addition, no effect of SA was observed on Thr172-AMPKα phosphorylation. In conclusion, our previously observed in vivo effects of SA on whole-body fat oxidation in men may not be explained via direct effects on HSkMC fat oxidation. Nevertheless, SA-mediated effects on whole-body fat oxidation may be triggered by other mechanisms including gut-derived hormones or may occur in other metabolically active tissues.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Palmitates/metabolism , Sodium Acetate/pharmacology , AMP-Activated Protein Kinases/chemistry , Amino Acid Motifs , Cells, Cultured , Humans , Insulin/metabolism , Male , Middle Aged , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Oxidation-Reduction/drug effects
5.
Mol Metab ; 53: 101287, 2021 11.
Article in English | MEDLINE | ID: mdl-34224918

ABSTRACT

OBJECTIVE: Recent studies suggest that hypoxia exposure may improve glucose homeostasis, but well-controlled human studies are lacking. We hypothesized that mild intermittent hypoxia (MIH) exposure decreases tissue oxygen partial pressure (pO2) and induces metabolic improvements in people who are overweight/obese. METHODS: In a randomized, controlled, single-blind crossover study, 12 men who were overweight/obese were exposed to MIH (15 % O2, 3 × 2 h/day) or normoxia (21 % O2) for 7 consecutive days. Adipose tissue (AT) and skeletal muscle (SM) pO2, fasting/postprandial substrate metabolism, tissue-specific insulin sensitivity, SM oxidative capacity, and AT and SM gene/protein expression were determined. Furthermore, primary human myotubes and adipocytes were exposed to oxygen levels mimicking the hypoxic and normoxic AT and SM microenvironments. RESULTS: MIH decreased systemic oxygen saturation (92.0 ± 0.5 % vs 97.1 ± 0.3, p < 0.001, respectively), AT pO2 (21.0 ± 2.3 vs 36.5 ± 1.5 mmHg, p < 0.001, respectively), and SM pO2 (9.5 ± 2.2 vs 15.4 ± 2.4 mmHg, p = 0.002, respectively) compared to normoxia. In addition, MIH increased glycolytic metabolism compared to normoxia, reflected by enhanced fasting and postprandial carbohydrate oxidation (pAUC = 0.002) and elevated plasma lactate concentrations (pAUC = 0.005). Mechanistically, hypoxia exposure increased insulin-independent glucose uptake compared to standard laboratory conditions (~50 %, p < 0.001) and physiological normoxia (~25 %, p = 0.019) through AMP-activated protein kinase in primary human myotubes but not in primary human adipocytes. MIH upregulated inflammatory/metabolic pathways and downregulated extracellular matrix-related pathways in AT but did not alter systemic inflammatory markers and SM oxidative capacity. MIH exposure did not induce significant alterations in AT (p = 0.120), hepatic (p = 0.132) and SM (p = 0.722) insulin sensitivity. CONCLUSIONS: Our findings demonstrate for the first time that 7-day MIH reduces AT and SM pO2, evokes a shift toward glycolytic metabolism, and induces adaptations in AT and SM but does not induce alterations in tissue-specific insulin sensitivity in men who are overweight/obese. Future studies are needed to investigate further whether oxygen signaling is a promising target to mitigate metabolic complications in obesity. CLINICAL TRIAL REGISTRATION: This study is registered at the Netherlands Trial Register (NL7120/NTR7325).


Subject(s)
Adipose Tissue/metabolism , Hypoxia/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Overweight/metabolism , Adaptation, Physiological , Adult , Aged , Humans , Male , Middle Aged , Oxygen/metabolism
6.
J Clin Endocrinol Metab ; 104(1): 49-56, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30137362

ABSTRACT

Context: Vitamin D deficiency in obesity has been linked to insulin resistance. However, studies that examined the association between plasma 25-hydroxyvitamin D3 [25(OH)D3] as well as plasma 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and tissue-specific insulin sensitivity are scarce. Furthermore, vitamin D receptor (VDR) and vitamin D-metabolizing enzymes [cytochrome 450 (CYP)] expression in adipose tissue (AT) might affect AT insulin sensitivity. Objective: To investigate the association between body mass index (BMI) and plasma 25(OH)D3 and 1,25(OH)2D3, AT VDR; between plasma 25(OH)D3, 1,25(OH)2D3, AT VDR, and tissue-specific insulin sensitivity in individuals with overweight/obesity. Design and Patients: This analysis included 92 adult individuals (BMI, >25 kg/m2). A two-step hyperinsulinemic-euglycemic clamp with a [6,6-2H2]-glucose tracer was performed to assess tissue-specific insulin sensitivity. Abdominal subcutaneous AT (SAT) mRNA expression of VDR and CYP was determined by using quantitative RT-PCR. Setting: University medical center. Main Outcome Measures: Plasma 25(OH)D3, 1,25(OH)2D3, 1,25(OH)2D3/25(OH)D3 ratio, SAT VDR and CYPs mRNA, and tissue-specific insulin sensitivity. Results: BMI was inversely associated with plasma 25(OH)D3 (ß = -0.274; P = 0.011) but not with plasma 1,25(OH)2D3. Plasma 25(OH)D3 was not related to CYPs or VDR expression in SAT. Plasma 1,25(OH)2D3 and 25(OH)D3 were not related to tissue-specific insulin sensitivity. Interestingly, SAT VDR mRNA was negatively associated with AT insulin sensitivity (ß = -0.207; P = 0.025). Conclusions: BMI was inversely associated with 25(OH)D3 concentrations, which could not be explained by alterations in SAT VDR and CYP enzymes. Plasma vitamin D metabolites were not related to tissue-specific insulin sensitivity. However, VDR expression in SAT was negatively associated with AT insulin sensitivity.


Subject(s)
Insulin Resistance , Obesity/metabolism , Overweight/metabolism , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Vitamin D/blood , Adult , Aged , Body Mass Index , Calcifediol/blood , Cytochromes/metabolism , Female , Gene Expression , Glucose Clamp Technique , Humans , Hydroxycholecalciferols/blood , Male , Middle Aged , Obesity/blood , Obesity/genetics , Overweight/blood , Overweight/genetics , Receptors, Calcitriol/metabolism , Subcutaneous Fat/metabolism , Young Adult
7.
J Clin Endocrinol Metab ; 103(10): 3688-3697, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30020463

ABSTRACT

Context and Objectives: Upper and lower body adipose tissue (AT) exhibits opposing associations with obesity-related cardiometabolic diseases. Recent studies have suggested that altered AT oxygen tension (pO2) may contribute to AT dysfunction. Here, we compared in vivo abdominal (ABD) and femoral (FEM) subcutaneous AT pO2 in women who are overweight and have obesity, and investigated the effects of physiological AT pO2 on human adipocyte function. Design: ABD and FEM subcutaneous AT pO2 and AT blood flow (ATBF) were assessed in eight [BMI (body mass index) 34.4 ± 1.6 kg/m2] postmenopausal women who were overweight with obesity and impaired glucose metabolism. ABD and FEM AT biopsy specimens were collected to determine adipocyte morphology and AT gene expression. Moreover, the effects of prolonged exposure (14 days) to physiological AT pO2 on adipokine expression/secretion, mitochondrial respiration, and glucose uptake were investigated in differentiated human multipotent adipose-derived stem cells. Results: AT pO2 was higher in ABD than FEM AT (62.7 ± 6.6 vs 50.0 ± 4.5 mm Hg, P = 0.013), whereas ATBF was comparable between depots. Maximal uncoupled oxygen consumption rates were substantially lower in ABD than FEM adipocytes for all pO2 conditions. Low physiological pO2 (5% O2) decreased proinflammatory gene expression, increased basal glucose uptake, and altered adipokine secretion in ABD and FEM adipocytes. Conclusions: We demonstrated for the first time, to our knowledge, that AT pO2 is higher in ABD than FEM subcutaneous AT in women who are overweight/with obesity, partly due to a lower oxygen consumption rate in ABD adipocytes. Moreover, low physiological pO2 decreased proinflammatory gene expression and improved the metabolic phenotype in differentiated human adipocytes, whereas more heterogeneous effects on adipokine secretion were found.


Subject(s)
Adipose Tissue/physiopathology , Insulin Resistance , Obesity/physiopathology , Overweight/physiopathology , Oxygen Consumption , Oxygen/metabolism , Adipose Tissue/metabolism , Adult , Aged , Biomarkers/analysis , Body Mass Index , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Obesity/metabolism , Overweight/metabolism , Phenotype , Prognosis , Subcutaneous Fat, Abdominal/physiopathology
8.
Article in English | MEDLINE | ID: mdl-29375478

ABSTRACT

BACKGROUND AND AIMS: Gut-derived short-chain fatty acids (SCFA), formed by microbial fermentation of dietary fibers, are believed to be involved in the etiology of obesity and diabetes. Previous data from our group showed that colonic infusions of physiologically relevant SCFA mixtures attenuated whole-body lipolysis in overweight men. To further study potential mechanisms involved in the antilipolytic properties of SCFA, we aimed to investigate the in vitro effects of SCFA incubations on intracellular lipolysis and signaling using a human white adipocyte model, the human multipotent adipose tissue-derived stem (hMADS) cells. METHODS: hMADS adipocytes were incubated with mixtures of acetate, propionate, and butyrate or single SCFA (acetate, propionate and butyrate) in concentrations ranging between 1 µmol/L and 1 mmol/L. Glycerol release and lipase activation was investigated during basal conditions and following ß-adrenergic stimulation. RESULTS: SCFA mixtures high in acetate and propionate decreased basal glycerol release, when compared to control (P < 0.05), while mixtures high in butyrate had no effect. Also, ß-adrenergic receptor mediated glycerol release was not significantly altered following incubation with SCFA mixtures. Incubation with only acetate decreased basal (1 µmol/L) and ß-adrenergically (1 µmol/L and 1 mmol/L) mediated glycerol release when compared with control (P < 0.05). In contrast, butyrate (1 µmol/L) slightly increased basal and ß-adrenergically mediated glycerol release compared with control (P < 0.05), while propionate had no effect on lipolysis. The antilipolytic effect of acetate was accompanied by a reduced phosphorylation of hormone-sensitive lipase (HSL) at serine residue 650. In addition, inhibition of Gi G proteins following pertussis toxin treatment prevented the antilipolytic effect of acetate. CONCLUSION: The present data demonstrated that acetate was mainly responsible for the antilipolytic effects of SCFA and acts via attenuation of HSL phosphorylation in a Gi-coupled manner in hMADS adipocytes. Therefore, the modulation of colonic and circulating acetate may be an important target to modulate human adipose tissue lipid metabolism.

9.
Diabetologia ; 56(10): 2255-65, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23907381

ABSTRACT

AIMS/HYPOTHESIS: Impaired regulation of lipolysis and accumulation of lipid intermediates may contribute to obesity-related insulin resistance and type 2 diabetes mellitus. We investigated insulin-mediated suppression of lipolysis in abdominal subcutaneous adipose tissue (AT) and skeletal muscle (SM) of obese men with normal glucose tolerance (NGT) and obese type 2 diabetic men. METHODS: Eleven NGT men and nine long-term diagnosed type 2 diabetic men (7 ± 1 years), matched for age (58 ± 2 vs 62 ± 2 years), BMI (31.4 ± 0.6 vs 30.5 ± 0.6 kg/m(2)) and [Formula: see text] (28.9 ± 1.5 vs 29.5 ± 2.4 ml kg(-1) min(-1)) participated in this study. Interstitial glycerol concentrations in AT and SM were assessed using microdialysis during a 1 h basal period and a 6 h stepwise hyperinsulinaemic-euglycaemic clamp (8, 20 and 40 mU m(-2) min(-1)). AT and SM biopsies were collected to investigate underlying mechanisms. RESULTS: Hyperinsulinaemia suppressed interstitial SM glycerol concentrations less in men with type 2 diabetes (-7 ± 6%, -13 ± 9% and -27 ± 9%) compared with men with NGT (-21 ± 7%, -38 ± 8% and -53 ± 8%) (p = 0.014). This was accompanied by increased circulating fatty acid and glycerol concentrations, a lower glucose infusion rate (21.8 ± 3.1 vs 30.5 ± 2.0 µmol kg body weight(-1) min(-1); p < 0.05), higher hormone-sensitive lipase (HSL) serine 660 phosphorylation, increased saturated diacylglycerol (DAG) lipid species in the muscle membrane and increased protein kinase C (PKC) activation in type 2 diabetic men vs men with NGT. No significant differences in insulin-mediated reduction in AT interstitial glycerol were observed between groups. CONCLUSIONS/INTERPRETATION: Our results suggest that a blunted insulin-mediated suppression of SM lipolysis may promote the accumulation of membrane saturated DAG, aggravating insulin resistance, at least partly mediated by PKC. This may represent an important mechanism involved in the progression of insulin resistance towards type 2 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT01680133.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/therapeutic use , Lipolysis/drug effects , Muscle, Skeletal/metabolism , Obesity/metabolism , Adipose Tissue/drug effects , Diabetes Mellitus, Type 2/drug therapy , Humans , Hyperinsulinism/metabolism , Male , Middle Aged , Muscle, Skeletal/drug effects , Obesity/drug therapy
10.
PLoS One ; 7(6): e39930, 2012.
Article in English | MEDLINE | ID: mdl-22768174

ABSTRACT

BACKGROUND: Blockade of the renin-angiotensin system (RAS) reduces the incidence of type 2 diabetes mellitus. In rodents, it has been demonstrated that RAS blockade improved adipose tissue (AT) function and glucose homeostasis. However, the effects of long-term RAS blockade on AT function have not been investigated in humans. Therefore, we examined whether 26-wks treatment with the angiotensin II type 1 receptor blocker valsartan affects AT function in humans with impaired glucose metabolism (IGM). METHODOLOGY/PRINCIPAL FINDINGS: We performed a randomized, double-blind, placebo-controlled parallel-group study, in which 38 subjects with IGM were treated with valsartan (VAL, 320 mg/d) or placebo (PLB) for 26 weeks. Before and after treatment, an abdominal subcutaneous AT biopsy was collected for measurement of adipocyte size and AT gene/protein expression of angiogenesis/capillarization, adipogenesis, lipolytic and inflammatory cell markers. Furthermore, we evaluated fasting and postprandial AT blood flow (ATBF) ((133)Xe wash-out), systemic inflammation and insulin sensitivity (hyperinsulinemic-euglycemic clamp). VAL treatment markedly reduced adipocyte size (P<0.001), with a shift toward a higher proportion of small adipocytes. In addition, fasting (P = 0.043) and postprandial ATBF (P = 0.049) were increased, whereas gene expression of angiogenesis/capillarization, adipogenesis and macrophage infiltration markers in AT was significantly decreased after VAL compared with PLB treatment. Interestingly, the change in adipocyte size was associated with alterations in insulin sensitivity and reduced AT gene expression of macrophage infiltration markers. VAL did not alter plasma monocyte-chemoattractant protein (MCP)-1, TNF-α, adiponectin and leptin concentrations. CONCLUSIONS/SIGNIFICANCE: 26-wks VAL treatment markedly reduced abdominal subcutaneous adipocyte size and AT macrophage infiltration markers, and increased ATBF in IGM subjects. The VAL-induced decrease in adipocyte size was associated with reduced expression of macrophage infiltration markers in AT. Our findings suggest that interventions targeting the RAS may improve AT function, thereby contributing to a reduced risk of developing cardiovascular disease and type 2 diabetes. TRIAL REGISTRATION: Trialregister.nl NTR721 (ISRCTN Registry: ISRCTN42786336).


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/physiopathology , Antihypertensive Agents/pharmacology , Glucose/metabolism , Tetrazoles/pharmacology , Valine/analogs & derivatives , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue/blood supply , Adipose Tissue/pathology , Biomarkers/blood , Biomarkers/metabolism , Blood Pressure/drug effects , Capillaries/drug effects , Capillaries/pathology , Cell Hypoxia/drug effects , Cell Size/drug effects , Chemotactic Factors/pharmacology , Double-Blind Method , Fasting/blood , Female , Gene Expression Regulation/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Insulin/pharmacology , Lipolysis/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Middle Aged , Placebos , Postprandial Period , Valine/pharmacology , Valsartan
11.
Metabolism ; 61(10): 1404-12, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22551950

ABSTRACT

The objective was to determine the contribution of dietary fat quantity and composition to lipolysis and lipolytic gene expression in humans in relation to obesity, insulin resistance, and the metabolic syndrome (MetS). Men and women with the MetS were randomly assigned to one of four isoenergetic diets: a high-fat saturated fat diet (n=10), a high-fat monounsaturated fat diet (n=7), and two low-fat high-complex carbohydrate (LFHCC) diets, one supplemented with 1.24 g/day long-chain n-3 PUFA (LFHCC: n=7, LFHCCn-3: n=8). Subcutaneous adipose tissue biopsies were taken before and after the 12-week dietary intervention period. ATGL and HSL mRNA and protein expression was determined. Whole body rate of appearance of free fatty acids (Ra(FFA)) was determined by intravenous infusion of [(2)H(2)]-palmitate in a subgroup of men (n=20). Adipose tissue ATGL and HSL mRNA and protein expression was not affected by alterations in dietary fat composition. Pooled analysis comparing the low- and high-fat diets showed that ATGL and HSL protein expression was significantly reduced after the LFHCC diets (P=.04), irrespective of long-chain n-3 PUFA. Moreover, LFHCC diets lowered fasting insulin, HOMA(IR), and (LDL)-cholesterol concentrations (P≤.05). Changes in ATGL and HSL protein expression was positively associated with changes in whole body Ra(FFA) (P<.03). The low-fat high-complex carbohydrate diets reduced ATGL and HSL protein expression and significantly improved circulating lipids and insulin sensitivity. Under isoenergetic conditions, dietary fat quantity, rather than composition, may be most important for modulating subcutaneous adipose tissue ATGL and HSL protein expression.


Subject(s)
Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Lipase/genetics , Metabolic Syndrome/diet therapy , Sterol Esterase/genetics , Subcutaneous Fat/metabolism , Adiposity , Aged , Female , Humans , Insulin Resistance , Lipase/analysis , Male , Metabolic Syndrome/metabolism , Middle Aged , RNA, Messenger/analysis , Sterol Esterase/analysis
12.
Circulation ; 124(1): 67-76, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21670228

ABSTRACT

BACKGROUND: Adipose tissue (AT) dysfunction in obesity contributes to chronic, low-grade inflammation that predisposes to type 2 diabetes mellitus and cardiovascular disease. Recent in vitro studies suggest that AT hypoxia may induce inflammation. We hypothesized that adipose tissue blood flow (ATBF) regulates AT oxygen partial pressure (AT P(O2)), thereby affecting AT inflammation and insulin sensitivity. METHODS AND RESULTS: We developed an optochemical measurement system for continuous monitoring of AT P(O2) using microdialysis. The effect of alterations in ATBF on AT P(O2) was investigated in lean and obese subjects with both pharmacological and physiological approaches to manipulate ATBF. Local administration of angiotensin II (vasoconstrictor) in abdominal subcutaneous AT decreased ATBF and AT P(O2), whereas infusion of isoprenaline (vasodilator) evoked opposite effects. Ingestion of a glucose drink increased ATBF and AT P(O2) in lean subjects, but these responses were blunted in obese individuals. However, AT P(O2) was higher (hyperoxia) in obese subjects despite lower ATBF, which appears to be explained by lower AT oxygen consumption. This was accompanied by insulin resistance, lower AT capillarization, lower AT expression of genes encoding proteins involved in mitochondrial biogenesis and function, and higher AT gene expression of macrophage infiltration and inflammatory markers. CONCLUSIONS: Our findings establish ATBF as an important regulator of AT P(O2). Nevertheless, obese individuals exhibit AT hyperoxia despite lower ATBF, which seems to be explained by lower AT oxygen consumption. This is accompanied by insulin resistance, impaired AT capillarization, and higher AT gene expression of inflammatory cell markers. CLINICAL TRIAL REGISTRATION- URL: http://www.trialregister.nl. Unique identifier: NTR2451.


Subject(s)
Adipose Tissue/blood supply , Adipose Tissue/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Oxygen/metabolism , Thinness/metabolism , Adipose Tissue/physiopathology , Angiotensin II/pharmacology , Humans , Hyperoxia/physiopathology , Inflammation/physiopathology , Isoproterenol/pharmacology , Male , Microcirculation/drug effects , Microcirculation/physiology , Middle Aged , Mitochondria/physiology , Obesity/physiopathology , Oxygen Consumption/physiology , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Thinness/physiopathology , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
13.
Reprod Sci ; 16(7): 642-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19351963

ABSTRACT

OBJECTIVES: The progressive rise in uterine blood flow (UBF) during pregnancy is accompanied by outward hypertrophic remodeling of the uterine artery (UA). After birth, UBF falls in concert with the sudden decline in uterine metabolic demands. Arterial remodeling associated with the reversal of increased blood flow has been described in large arteries. It is unclear whether this situation applies to small-sized resistance arteries such as the UA. We investigated the pattern of UA remodeling postpartum in relation to age and endothelial nitric oxide synthase (eNOS) deficiency. METHODS: Uterine artery of 2 and 10 days postpartum young (age 12 weeks), aged (age 40 weeks), and eNOS-deficient (eNOS( -/-), age 12 weeks) mice were dissected and processed for either morphometric analysis (lumen, wall mass) or immunohistochemistry (cellular differentiation, proliferation, and apoptosis). We used data of previously studied control (nonpregnant) and late-pregnant (17 days gestation) mice as reference. RESULTS: By 2 days postpartum, morphometric and cellular characteristics of the UA did not differ from those of late-pregnant UA. By 10 days postpartum, the UA was wider with wall mass being decreased by approximately 30%. Cytological parameters indicated a stable smooth muscle media. Apoptosis was only present in UA of 2 and 10 days pregnant mice. In eNOS(- /-) and aged mice, changes were smaller or absent, respectively. CONCLUSIONS: The outward hypertrophic response of the UA induced by pregnancy regresses gradually postpartum. We speculate that persisting UA widening facilitates UA remodeling in a next pregnancy thereby favoring placentation and with it, allowing for a higher birth weight as usually observed in a second mammalian pregnancy.


Subject(s)
Aging/physiology , Nitric Oxide Synthase Type III/deficiency , Postpartum Period/physiology , Uterus/blood supply , Uterus/enzymology , Age Factors , Aging/genetics , Animals , Animals, Newborn , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/physiology , Postpartum Period/genetics , Pregnancy
14.
Histochem Cell Biol ; 129(4): 535-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18224330

ABSTRACT

Accumulation of triacylglycerol (TAG) and lipid intermediates in skeletal muscle plays an important role in the etiology of insulin resistance and type 2 diabetes mellitus. Disturbances in skeletal muscle lipid turnover and lipolysis may contribute significantly to this. So far, knowledge on the regulation of muscle lipolysis is limited. Recently the identification of a new lipase was reported: adipose triglyceride lipase (ATGL). ATGL deficient animals show significant lipid accumulation in skeletal muscle, which may indicate that ATGL plays a pivotal role in skeletal muscle lipolysis. However, until now, it is still unknown whether ATGL protein is expressed in human skeletal muscle. Therefore, the aim of the present study was to investigate whether ATGL is expressed at the protein level in human skeletal muscle, and to examine whether its expression is fiber-type specific. To accomplish this, we established an imunohistochemical and immunofluorescent staining procedure to study ATGL protein expression in relation to fiber type in human vastus lateralis muscle of eight male subjects (BMI range: 21.0-34.5 kg/m2 and age: 38-59 years). In the present paper we report for the first time that ATGL protein is indeed expressed in human skeletal muscle. Moreover, ATGL is exclusively expressed in type I (oxidative) muscle fibers, suggesting a pivotal role for ATGL in intramuscular fatty acid handling, lipid storage and breakdown.


Subject(s)
Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Sterol Esterase/metabolism , Adult , Anthropometry , Humans , Immunohistochemistry , Male , Middle Aged , Sterol Esterase/genetics
15.
Eur J Obstet Gynecol Reprod Biol ; 123(1): 35-40, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16260338

ABSTRACT

OBJECTIVE: Circulating levels of adrenomedullin (ADM)--a vasodilator peptide with long-lasting effects--increase in the course of pregnancy. Neither the site nor the concomitant rate of ADM synthesis in pregnancy is known. The aim of this study was to test the hypothesis that the rise in plasma levels of ADM during pregnancy is paralleled by increased gene expression and protein levels in the vascular bed. STUDY DESIGN: We determined in cardiovascular and reproductive tissues of non-pregnant (n=10) and 10-days pregnant (n=10) Wistar rats ADM gene expression by semi-quantitative RT-PCR (normalized to GAPDH). As a support for the mRNA data, protein concentrations were measured by both ELISA and Western blot analysis. Finally, ADM in these tissues was localized by immunohistochemical staining. Statistical analysis was carried out by applying Mann-Whitney U-test. RESULTS: ADM mRNA levels in the abdominal aorta, renal artery and the kidney were increased during pregnancy. In addition, immunohistochemical staining in the kidney, uterus, abdominal aorta, renal, uterine and superior mesenteric artery was more intense as compared to non-pregnant rats. However, we observed lower concentrations of tissue ADM protein in pregnant rats, indicating an increased release of the hormone by the producing cells. CONCLUSION: Vascular ADM gene expression is increased in the first half of rat pregnancy. This coincides and may be functionally related to the institution of a high flow/low resistance circulation in pregnancy.


Subject(s)
Blood Vessels/metabolism , Peptides/genetics , Peptides/metabolism , Pregnancy, Animal/metabolism , Adrenomedullin , Animals , Aorta, Abdominal/metabolism , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation, Developmental , Kidney/metabolism , Mesenteric Artery, Superior/metabolism , Pregnancy , Rats , Rats, Wistar , Renal Artery/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Uterus/metabolism
16.
Biol Reprod ; 73(6): 1289-93, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16120827

ABSTRACT

During pregnancy, the lumenal diameter and wall mass of the uterine artery (UA) increase, most likely in response to the increased hemodynamic strain resulting from the chronically elevated uterine blood flow (UBF). In this remodeling process, the phenotype of vascular smooth-muscle cells (VSMC) is transiently altered to enable VSMC proliferation. These phenomena are already seen during early pregnancy, when the rise in UBF is still modest. This raises the question whether the newly instituted endocrine environment of pregnancy is involved in the onset of the pregnancy-related UA remodeling. We tested the hypothesis that the conceptus is not essential for the onset of UA remodeling of pregnancy. Six control and 18 pseudopregnant (Postcopulation Days 5, 11, and 17; n = 6 per subgroup) C57Bl/6 mice were killed and UAs were dissected and processed for either morphometric analysis or immunohistochemistry. The latter consisted of staining UA cross sections for the differentiation markers smooth muscle alpha-actin and smoothelin, and for the proliferation marker MKI67. We analyzed the UA changes in response to pseudopregnancy by ANOVA. Data are presented as mean +/- SD. By Day 11 of pseudopregnancy, the UA lumen was 25% wider and the media cross-sectional area 71% larger than in control mice. These differences were accompanied by reduced smoothelin expression and increased proliferation of UA medial VSMC. All UA morphological differences had returned or were in the process of returning to baseline values by Day 17 of pseudopregnancy. The structural and cellular aspects of UA remodeling as seen at midpregnancy are also seen in pseudopregnancy. These results support the concept that the conceptus does not contribute to the initiation of UA remodeling. We suggest that ovarian hormones trigger the onset of UA remodeling.


Subject(s)
Arteries/physiology , Pregnancy , Pseudopregnancy/physiopathology , Uterus/blood supply , Actins/metabolism , Animals , Arteries/anatomy & histology , Cytoskeletal Proteins/metabolism , Female , Mice , Mice, Inbred C57BL , Muscle Proteins/metabolism , Muscle, Smooth, Vascular/cytology , Pseudopregnancy/blood
17.
Biol Reprod ; 72(5): 1161-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15659709

ABSTRACT

The progressive rise in uterine blood flow during pregnancy is accompanied by outward hypertrophic remodeling of the uterine artery (UA). This process involves changes of the arterial smooth muscle cells and extracellular matrix. Acute increases in blood flow stimulate endothelial production of nitric oxide (NO). It remains to be established whether endothelial NO synthase (eNOS) is involved in pregnancy-related arterial remodeling. We tested the hypothesis that absence of eNOS results in a reduced remodeling capacity of the UA during pregnancy leading to a decline in neonatal outcome. UA of nonpregnant and pregnant wild-type (Nos3+/+) and eNOS-deficient (Nos3-/-) mice were collected and processed for standard morphometrical analyses. In addition, cross sections of UA were processed for cytological (smoothelin, smooth muscle alpha-actin) and proliferation (Ki-67) immunostaining. We compared the pregnancy-related changes longitudinally and, together with the data on pregnancy outcome, transversally by analysis of variance with Bonferroni correction. During pregnancy, the increases in radius and medial cross sectional area of Nos3-/- UA was significantly less than those of Nos3+/+ UA. Smooth muscle cell dedifferentiation and proliferation were impaired in gravid Nos3-/- mice as deduced from the lack of change in the expression of smoothelin and smooth muscle alpha-actin, and the reduced Ki-67 expression. Until 17 days of gestation, litter size did not differ between both genotypes, but at birth the number of viable newborn pups and their weights were smaller in Nos3-/- than in Nos3+/+ mice. We conclude that absence of eNOS adversely affects UA remodeling in pregnancy, which may explain the impaired pregnancy outcome observed in these mice.


Subject(s)
Nitric Oxide Synthase/deficiency , Uterus/blood supply , Uterus/enzymology , Adaptation, Physiological , Animals , Animals, Newborn , Arteries/anatomy & histology , Arteries/enzymology , Arteries/physiology , Female , Gestational Age , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III , Pregnancy , Pregnancy Outcome , Reproduction
18.
J Soc Gynecol Investig ; 11(5): 304-10, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219884

ABSTRACT

OBJECTIVE: The progressive increase in uterine blood flow (UBF) during pregnancy is accommodated by morphologic changes in the uterine artery (UA) in a process defined as arterial remodeling. This process is accompanied by changes in cytoskeletal architecture of the arterial smooth muscle cells (SMCs) and surrounding extracellular matrix (ECM). Aging reduces flow-induced arterial remodeling. We studied changes in the murine UA during pregnancy and on the effects of aging on the capacity of the UA to remodel in response to pregnancy. METHODS: We determined morphologic and cytologic changes in UA from nonpregnant and pregnant mice aged 12 weeks (young) and 40 weeks (old) and correlated them with their reproductive performance. RESULTS: In young mice, pregnancy induced an early increase in UA wall mass, which preceded lumen widening. These changes were not accompanied by altered densities of elastin and collagen in the ECM of the medial layer. Smooth muscle cell proliferation increased in midpregnancy and was paralleled by a transient decrease in smoothelin and smooth muscle alpha-actin expression. In old mice, these pregnancy-dependent changes in the UA wall were either absent or markedly reduced. Although by day 11 of pregnancy litter size did not differ between both age groups, the number of viable pups in old mice by day 17 of pregnancy and at birth was 25% and 60% less than in young mice. CONCLUSION: Outward hypertrophic remodeling of the UA during pregnancy in young mice is characterized by transient phenotypic modulation and proliferation of SMCs and alterations in the composition of the ECM. In contrast, in older mice, UA remodeling is markedly reduced and accompanied with a loss of viable fetuses near term pregnancy.


Subject(s)
Aging/physiology , Arteries/physiology , Pregnancy, Animal/physiology , Uterus/blood supply , Animals , Female , Gestational Age , Immunohistochemistry , Mice , Mice, Inbred C57BL , Pregnancy , Time Factors , Uterus/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...