Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0287094, 2023.
Article in English | MEDLINE | ID: mdl-37310961

ABSTRACT

Mammalian decomposition provides pulses of organic matter to the local ecosystem creating ephemeral hotspots of nutrient cycling. While changes to soil biogeochemistry in these hotspots have been described for C and N, patterns associated with deposition and cycling of other elements have not received the same attention. The goal of our study was to evaluate temporal changes to a broad suite of dissolved elements in soils impacted by human decomposition on the soil surface including: 1) abundant mineral elements in the human body (K, Na, S, P, Ca, and Mg), 2) trace elements in the human body (Fe, Mn, Se, Zn, Cu, Co, and B), and 3) Al which is transient in the human body but common in soils. We performed a four-month human decomposition trial at the University of Tennessee Anthropology Research Facility and quantified elemental concentrations dissolved in the soil solution, targeting the mobile and bioavailable fraction. We identified three groups of elements based on their temporal patterns. Group 1 elements appeared to be cadaver-derived (Na, K, P, S) and their persistence in soil varied based upon soluble organic forms (P), the dynamics of the soil exchange complex (Na, K), and gradual releases attributable to microbial degradation (S). Group 2 elements (Ca, Mg, Mn, Se, B) included three elements that have greater concentrations in soil than would be expected based on cadaver inputs alone, suggesting that these elements partially originate from the soil exchange (Ca, Mg), or are solubilized as a result of soil acidification (Mn). Group 3 elements (Fe, Cu, Zn, Co, Al) increased late in the decomposition process, suggesting a gradual solubilization from soil minerals under acidic pH conditions. This work presents a detailed longitudinal characterization of changes in dissolved soil elements during human decomposition furthering our understanding of elemental deposition and cycling in these environments.


Subject(s)
Anthropology , Ecosystem , Animals , Humans , Bicycling , Cadaver , Soil , Mammals
2.
Chemosphere ; 233: 615-624, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31195265

ABSTRACT

Tylosin (Tyl) is a veterinary antibiotic commonly used in swine and poultry production. Due to metabolic inefficiencies, it enters the environment through manure applications. Ion exchange is an important retention mechanism for Tyl, particularly for smectite clay. The objectives of this study are to characterize the exchange interactions of Tyl with common soil cations in subsoil horizons that contain smectite and to investigate the interactions using in situ Fourier transform infrared (FTIR) spectroscopy. Adsorbed Tyl in pH neutral, smectitic subsoil horizons is divided into exchangeable and nonexchangeable forms. The percentage of adsorbed Tyl that is exchangeable varies from 36% to 43% when Na+ is the competing cation, and from 57% to 66% when Ca2+ competes. In NaX-TylX binary exchange systems, neither Na+ nor Tyl+ is preferred by the clay exchange phase, and the Vanselow selectivity coefficients (KV) for the NaX→TylX exchange reaction range between 0.79 and 1.41. In the CaX2-TylX systems, Tyl+ is preferred by the clay exchange phase when the equivalent fraction of TylX (ETylX) is less than 0.4. The KV values for the CaX2→TylX exchange reaction are at a maximum at the lowest ETylX values, with 17.6

Subject(s)
Soil Pollutants/chemistry , Tylosin/chemistry , Adsorption , Animals , Anti-Bacterial Agents/chemistry , Cations , Clay , Hydrogen-Ion Concentration , Ion Exchange , Manure , Silicates , Soil/chemistry , Soil Pollutants/analysis , Swine
3.
Sci Rep ; 9(1): 6610, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036900

ABSTRACT

New urease and nitrification inhibitors and polymer coatings were introduced in recent years, but their effects on N loss and plant N nutrition were scarcely examined in agronomic no-tillage production systems. A field experiment of urea treated with efficiency enhancers was conducted on no-tillage corn (Zea mays L.) in Tennessee, the USA during 2013-2015. A field experiment on urea and ammonium nitrate (UAN) treated with efficiency enhancers was carried out on no-tillage corn in Tennessee in 2014 and 2015. Urea treated with N-(n-butyl) thiophosphoric triamide (NBPT) at concentrations of 20% (NBPT1), 26.7% (NBPT2), or 30% (NBPT3) and polymer coated urea (PCU) were effective but maleic-itaconic copolymer treated urea was ineffective in reducing ammonia volatilization loss and improving N nutrition, grain yield, and N agronomic use efficiency of corn compared with untreated urea. Specifically, NBPT1, NBPT2, or NBPT3 treated urea and PCU reduced the total ammonia volatilization loss by 29.1-78.8%, 35.4-81.9%, 77.3-87.4%, and 59.1-83.3% during the 20 days after N applications, but increased grain yield by 15.6-31.4%, 12.9-34.8%, 18.7-19.9%, and 14.6-41.1%, respectively. The inhibitory effect of NBPT on ammonia volatilization did not improve with NBPT concentration increased from 20% to 30%. UAN treated with NBPT3 or a combination of urease and nitrification inhibitors resulted in 16.5-16.6% higher corn yield than untreated UAN only when they were surface applied. In conclusion, when urea-containing fertilizers are surface applied without any incorporation into the soil under no-tillage, their use efficiencies and performances on corn can be enhanced with an effective urease inhibitor in areas and years with noticeable urea N losses.


Subject(s)
Fertilizers , Nitrogen/metabolism , Urea/chemistry , Volatilization/drug effects , Zea mays/metabolism , Agriculture , Ammonia/metabolism , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Nitrification/drug effects , Nitrous Oxide , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Polymers/chemistry , Soil/chemistry , Urea/pharmacology , Urease/antagonists & inhibitors , Zea mays/drug effects , Zea mays/growth & development
4.
Chemosphere ; 90(10): 2623-30, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23246725

ABSTRACT

Surface properties of switchgrass-derived biochars produced at fast pyrolysis temperatures of 450, 600 and 800 °C were characterized at different solution pHs in order to determine the structural and chemical changes of artificially-weathered biochars when incorporated into soil. As biochars were acidified from pH 7 to 3, crystalline minerals dissolved slowly releasing nutrients; however, residual minerals were still detected in biochars produced at higher pyrolysis temperatures after pH treatment. Moreover, the amount of exchangeable bases and other inorganic compounds released from the biochars increased when pH decreased. As minerals dissolved from the biochars, total surface area and pore volume were found to increase. Surface functional groups and water vapor adsorption capacity at 0.8 P/Po also increased, whereas the potential CEC of biochars decreased due to the replacement of exchangeable sites by hydrogen ion. Therefore, during the aging process, it is predicted that soil-incorporated biochars will slowly release nutrients with changes in surface functionality and porosity, which are expected to enhance water holding capacity of soil and provide a beneficial habitat for microbial colonization.


Subject(s)
Charcoal/chemistry , Adsorption , Gases/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Minerals/chemistry , Principal Component Analysis , Soil/chemistry , Spectroscopy, Fourier Transform Infrared , Surface Properties , Water/chemistry
5.
J Protein Chem ; 21(8): 529-36, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12638655

ABSTRACT

Two small multimeric histidine-rich proteins, AgNt84 and Ag164, encoded by two nodule-specific cDNAs isolated from nodule cDNA libraries of the actinorhizal host plant Alnus glutinosa, represent a new class of plant metal binding proteins. This paper reports the characterization of the purified in vitro-expressed proteins by size exclusion chromatography, circular dichroism, equilibrium dialysis, metal affinity chromatography coupled with mass spectrometry, and nuclear magnetic resonance spectroscopy. These analyses reveal that each polypeptide is capable of binding multiple atoms of Zn2+, Ni2-, Co2+, Cu2+, Cd2+ and Hg2+. A reversible shift in histidine Cepsilon1 and Cdelta2 protons in NMR analysis occurred during titration of this protein with ZnCl2 strongly suggesting that histidine residues are responsible for metal binding. AgNt84 and Ag164 are not related to metal binding metallothioneins and phytochelatins and represent a new class of plant metal binding proteins that we propose to call metallohistins. Possible biological roles in symbioses for AgNt84 and Ag164, and their potential for use in bioremediation are discussed.


Subject(s)
Metals/chemistry , Metals/classification , Plants/metabolism , Proteins/chemistry , Amino Acid Sequence , Chlorides/pharmacology , Chromatography , Circular Dichroism , DNA, Complementary/metabolism , Escherichia coli/metabolism , Gene Deletion , Gene Library , Histidine/chemistry , In Situ Hybridization , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Sequence Data , Peptides/chemistry , Proteins/classification , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Zinc Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...