Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biochem Parasitol ; 100(1): 73-84, 1999 May 15.
Article in English | MEDLINE | ID: mdl-10376995

ABSTRACT

We demonstrated the existence of three transport activities in promastigotes of Leishmania braziliensis, Leishmania guyanensis, and Leishmania mexicana. The first activity, an energy-dependent efflux of pirarubicin, was observed in all Leishmania species and inhibited by verapamil, by 2-[4-(diphenylmethyl)-1-piperazinyl]ethyl-5-(trans-4,6-dimethyl-1, 3,2-dioxaphosphorinan-2-yl)-2,6-dimethyl-4-(3-nitrophenyl)-3-py ridinecarboxylate P oxide (PAK104P) and by the phenothiazine derivatives: thioridazine, prochlorperazine, trifluoperazine, chlorpromazine and trifluoropromazine. The second activity, an energy-dependent efflux of calcein acetoxymethylester, was observed in all Leishmania species and inhibited by PAK104P and the same phenothiazine derivatives, but not by verapamil. The third activity, an energy-dependent efflux of calcein, was clearly detected in L. braziliensis and guyanensis and inhibited only by prochlorperazine and trifluoperazine. The fact that prochlorperazine and trifluoperazine inhibited the energy-dependent efflux of the three substrates suggests that these activities are mediated by the same transport system. It is noteworthy that the transport system identified in this study shares several properties with the mammalian multidrug resistance pump, MRP1. Pirarubicin, calcein acetoxymethylester and calcein are well known substrates of the MRP. Furthermore, the three types of inhibitors are also inhibitors of the MRP function.


Subject(s)
Doxorubicin/analogs & derivatives , Drug Resistance, Multiple , Fluoresceins/metabolism , Leishmania/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Biological Transport , Cyclic P-Oxides/pharmacology , Doxorubicin/metabolism , Energy Metabolism , Fluorescent Dyes/metabolism , Leishmania/drug effects , Leishmania/growth & development , Nicotinic Acids/pharmacology , Phenothiazines/pharmacology , Tumor Cells, Cultured , Verapamil/pharmacology
2.
Biochemistry ; 37(8): 2243-50, 1998 Feb 24.
Article in English | MEDLINE | ID: mdl-9485370

ABSTRACT

Multidrug resistance protein (MRP) and P-glycoprotein (Pgp) are both members of the superfamily of ATP binding cassette plasma membrane drug transport proteins, which may be partly responsible for multidrug resistance of tumor cells. Although MRP has been identified as an organic anion transporter and Pgp as a transporter of certain positively charged compounds, there is considerable overlap in resistance spectrum, suggesting that both proteins transport important anticancer agents such as doxorubicin, etoposide, and vincristine. To obtain more insight in the handling of drugs by both proteins, we performed a detailed kinetic analysis of the efflux of calcein-acetoxymethyl ester (CAL-AM), a common neutral substrate for both proteins and compared it with the kinetics of efflux of calcein (CAL) which is only effluxed by MRP. CAL, the hydrolysis product of the nonfluorescent CAL-AM, is negatively charged and highly fluorescent. For this purpose Pgp+ K562/ADR and MRP+ GLC4/ADR tumor cells were incubated with CAL-AM in ATP-rich or ATP-depleted buffer, and the calcein formation was followed in time by fluorescence development. The intracellular CAL could be distinguished from effluxed (extracellular) CAL by addition to the medium of Co2+, which completely quenched the extracellular CAL fluorescence. The results showed that the Vmax for efflux of CAL-AM and CAL by MRP were very similar (1.0-1.2 x 10(5) molecules/cell/s) but that the Km for CAL-AM was much lower (0.05 microM) than for CAL (268 microM). The latter therefore is much less efficiently transported by MRP than CAL-AM. The Km for CAL-AM transport by Pgp (0.12 microM) was similar to that for MRP. Compared to previously published data for anthracyclines, the kinetic data for MRP-mediated CAL-AM pumping are most similar to those for the neutral hydroxydaunorubicin. These data give a quantitative account of transport properties of MRP for two related but differently charged compounds.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP-Binding Cassette Transporters/metabolism , Fluoresceins/metabolism , Fluorescent Dyes/metabolism , Biological Transport, Active , Cell Line , Drug Resistance, Multiple , Humans , Kinetics , Multidrug Resistance-Associated Proteins , Neoplasm Proteins/metabolism , Spectrometry, Fluorescence , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...