Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Pharmacol ; 15: 1352939, 2024.
Article in English | MEDLINE | ID: mdl-38469410

ABSTRACT

Background: Chemotherapy-induced peripheral neuropathy (CIPN) is a common entity (30%-40%) and can significantly limit the quality of life of patients, especially those that persist for more than 6 months after treatment (chronic neuropathy). Studies have shown a possible association between the presence of genetic polymorphisms in ABCB1 and the development of acute CIPN, although this relationship with chronic CIPN remains unexplored. This is an analytical observational case-control study defined by the presence (cases) or absence (controls) of CIPN at 6 months after the end of the neurotoxic drug. Our aim is to demonstrate whether these ABCB1 polymorphisms also influence the chronification of this toxicity, as well as the clinical factors that can help us to predict it. Methods: The study included 152 patients treated with tri-weekly oxaliplatin (O) or weekly paclitaxel (P); 86 cases and 66 controls. Clinical and analytical parameters were analysed including the study of ABCB1 genetic polymorphisms in a blood sample. Results: ABCB1 genetic polymorphisms C1236T (rs1128503) and C3435T (rs1045642) are associated with the development of chronic CIPN in patients treated with P. No differences were found in patients treated with O. Other predictive factors to be considered in the development of this toxicity are age >60 years, BMI ≥30, toxic habits and cardiovascular risk factors. Conclusion: CIPN is a common and understudied toxicity, despite being a limiting factor in the quality of life of many patients. As described in acute CIPN, our study demonstrates the relationship between chronic neuropathy and being a carrier of specific polymorphisms (C1236T and C3435T) of the ABCB1 gene in patients treated with P. In addition, there are modifiable factors (obesity, smoking, or alcohol) that may influence its development. Further prospective studies are needed to investigate genetic and clinical modifiable factors predisposing to CIPPN to develop prevention and treatment strategies.

4.
Clin Transl Oncol ; 25(9): 2647-2664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37326826

ABSTRACT

Breast cancer is the leading cause of cancer in women in Spain and its annual incidence is rapidly increasing. Thanks to the screening programs in place, nearly 90% of breast cancer cases are detected in early and potentially curable stages, despite the COVID-19 pandemic possibly having impacted these numbers (not yet quantified). In recent years, locoregional and systemic therapies are increasingly being directed by new diagnostic tools that have improved the balance between toxicity and clinical benefit. New therapeutic strategies, such as immunotherapy, targeted drugs, and antibody-drug conjugates have also improved outcomes in some patient subgroups. This clinical practice guideline is based on a systematic review of relevant studies and on the consensus of experts from GEICAM, SOLTI, and SEOM.


Subject(s)
Breast Neoplasms , COVID-19 , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Pandemics , Consensus , Drug Delivery Systems
5.
Nat Commun ; 13(1): 2982, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35624087

ABSTRACT

Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling.


Subject(s)
Signal Transduction , Stearoyl-CoA Desaturase , Animals , Apoptosis , Fatty Acids , Mice , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Unfolded Protein Response
6.
EMBO Rep ; 22(8): e52905, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34190393

ABSTRACT

Planarians are able to stand long periods of starvation by maintaining adult stem cell pools and regenerative capacity. The molecular pathways that are needed for the maintenance of regeneration during starvation are not known. Here, we show that down-regulation of chaperonin TRiC/CCT subunits abrogates the regeneration capacity of planarians during starvation, but TRiC/CCT subunits are dispensable for regeneration in fed planarians. Under starvation, they are required to maintain mitotic fidelity and for blastema formation. We show that TRiC subunits modulate the unfolded protein response (UPR) and are required to maintain ATP levels in starved planarians. Regenerative defects in starved CCT-depleted planarians can be rescued by either chemical induction of mild endoplasmic reticulum stress, which leads to induction of the UPR, or by the supplementation of fatty acids. Together, these results indicate that CCT-dependent UPR induction promotes regeneration of planarians under food restriction.


Subject(s)
Planarians , Animals , Chaperonin Containing TCP-1 , Down-Regulation , Planarians/genetics , Unfolded Protein Response
7.
EMBO Rep ; 22(1): e49328, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33300287

ABSTRACT

Lipid metabolism influences stem cell maintenance and differentiation but genetic factors that control these processes remain to be delineated. Here, we identify Tnfaip2 as an inhibitor of reprogramming of mouse fibroblasts into induced pluripotent stem cells. Tnfaip2 knockout impairs differentiation of embryonic stem cells (ESCs), and knockdown of the planarian para-ortholog, Smed-exoc3, abrogates in vivo tissue homeostasis and regeneration-processes that are driven by somatic stem cells. When stimulated to differentiate, Tnfaip2-deficient ESCs fail to induce synthesis of cellular triacylglycerol (TAG) and lipid droplets (LD) coinciding with reduced expression of vimentin (Vim)-a known inducer of LD formation. Smed-exoc3 depletion also causes a strong reduction of TAGs in planarians. The study shows that Tnfaip2 acts epistatically with and upstream of Vim in impairing cellular reprogramming. Supplementing palmitic acid (PA) and palmitoyl-L-carnitine (the mobilized form of PA) restores the differentiation capacity of Tnfaip2-deficient ESCs and organ maintenance in Smed-exoc3-depleted planarians. Together, these results identify a novel role of Tnfaip2 and exoc3 in controlling lipid metabolism, which is essential for ESC differentiation and planarian organ maintenance.


Subject(s)
Lipid Metabolism , Planarians , Animals , Cell Differentiation , Homeostasis , Lipid Metabolism/genetics , Mice , Planarians/genetics , RNA Interference
8.
Cell Rep ; 33(2): 108247, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053344

ABSTRACT

Underlying mechanisms of how infectious inflammation is resolved by the host are incompletely understood. One hallmark of inflammation resolution is the activation of specialized pro-resolving mediators (SPMs) that enhance bacterial clearance and promote tissue repair. Here, we reveal α-hemolysin (Hla) from Staphylococcus aureus as a potent elicitor of SPM biosynthesis in human M2-like macrophages and in the mouse peritoneum through selective activation of host 15-lipoxygenase-1 (15-LOX-1). S. aureus-induced SPM formation in M2 is abolished upon Hla depletion or 15-LOX-1 knockdown. Isolated Hla elicits SPM formation in M2 that is reverted by inhibition of the Hla receptor ADAM10. Lipid mediators derived from Hla-treated M2 accelerate planarian tissue regeneration. Hla but not zymosan provokes substantial SPM formation in the mouse peritoneum, devoid of leukocyte infiltration and pro-inflammatory cytokine secretion. Besides harming the host, Hla may also exert beneficial functions by stimulating SPM production to promote the resolution of infectious inflammation.


Subject(s)
Bacterial Toxins/pharmacology , Hemolysin Proteins/pharmacology , Inflammation Mediators/metabolism , Inflammation/metabolism , ADAM10 Protein/metabolism , Animals , Arachidonate 15-Lipoxygenase/metabolism , Endotoxins/metabolism , Enzyme Activation/drug effects , Gene Deletion , Humans , Lipid Metabolism/drug effects , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Peritoneum/drug effects , Peritoneum/metabolism , Planarians/drug effects , Planarians/physiology , Pore Forming Cytotoxic Proteins/metabolism , Regeneration/drug effects
10.
Stem Cell Reports ; 13(2): 405-418, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31353226

ABSTRACT

Reduction of caloric intake delays and prevents age-associated diseases and extends the life span in many organisms. It may be that these benefits are due to positive effects of caloric restriction on stem cell function. We use the planarian model Schmidtea mediterranea, an immortal animal that adapts to long periods of starvation by shrinking in size, to investigate the effects of starvation on telomere length. We show that the longest telomeres are a general signature of planarian adult stem cells. We also observe that starvation leads to an enrichment of stem cells with the longest telomeres and that this enrichment is dependent on mTOR signaling. We propose that one important effect of starvation for the rejuvenation of the adult stem cell pool is through increasing the median telomere length in somatic stem cells. Such a mechanism has broad implications for how dietary effects on aging are mediated at the whole-organism level.


Subject(s)
Planarians/physiology , TOR Serine-Threonine Kinases/metabolism , Telomere/genetics , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Argonaute Proteins/antagonists & inhibitors , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Down-Regulation , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/genetics , Helminth Proteins/metabolism , Models, Biological , Planarians/genetics , RNA Interference , RNA, Double-Stranded/metabolism , Signal Transduction , Starvation , Telomere Homeostasis
11.
Ecotoxicol Environ Saf ; 175: 19-28, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30878660

ABSTRACT

In the present study the polycyclic aromatic hydrocarbon removal and metabolic adaptation of Amycolatopsis tucumanensis DSM 45259 were investigated. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed differential synthesis of proteins which were identified by MALDI-TOF. To elucidate the phenanthrene metabolic pathway in A. tucumanensis DSM45259, two-dimensional electrophoresis and detection of phenanthrene degradation intermediates by GS-MS were performed. The presence of aromatic substrates resulted in changes in the abundance of proteins involved in the metabolism of aromatic compounds, oxidative stress response, energy production and protein synthesis. The obtained results allowed us to clarify the phenanthrene catabolic pathway, by confirming the roles of several proteins involved in the degradation process and comprehensive adaptation. This may clear the way for more efficient engineering of bacteria in the direction of more effective bioremediation applications.


Subject(s)
Actinomycetales/metabolism , Bacterial Proteins/metabolism , Environmental Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Actinomycetales/drug effects , Biodegradation, Environmental , Environmental Pollutants/metabolism , Metabolic Networks and Pathways/drug effects , Phenanthrenes/analysis , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism
12.
Semin Cell Dev Biol ; 87: 169-181, 2019 03.
Article in English | MEDLINE | ID: mdl-29705301

ABSTRACT

All living forms, prokaryotes as eukaryotes, have some means of adaptation to food scarcity, which extends the survival chances under extreme environmental conditions. Nowadays we know that dietary interventions, including fasting, extends lifespan of many organisms and can also protect against age-related diseases including in humans. Therefore, the capacity of adapting to periods of food scarcity may have evolved billions of years ago not only to allow immediate organismal survival but also to be able to extend organismal lifespan or at least to lead to a healthier remaining lifespan. Planarians have been the center of attention since more than two centuries because of their astonishing power of full body regeneration that relies on a large amount of adult stem cells or neoblasts. However, they also present an often-overlooked characteristic. They are able to stand long time starvation. Planarians have adapted to periods of fasting by shrinking or degrowing. Here we will review the published data about starvation in planarians and conclude with the possibility of starvation being one of the processes that rejuvenate the planarian, thus explaining the historical notion of non-ageing planarians.


Subject(s)
Food Deprivation/physiology , Planarians/metabolism , Animals , Fasting , Humans , Planarians/cytology , Regeneration , Rejuvenation
13.
Oncotarget ; 8(13): 21754-21769, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28423516

ABSTRACT

Here we showed that the addition of the COX-2 inhibitor celecoxib improved the antitumor efficacy in colorectal cancer (CRC) of the monoclonal anti-EGFR antibody cetuximab. The addition of celecoxib augmented the efficacy of cetuximab to inhibit cell proliferation and to induce apoptosis in CRC cells. Moreover, the combination of celecoxib and cetuximab was more effective than either treatment alone in reducing the tumor volume in a mouse xenograft model. The combined treatment enhanced the inhibition of EGFR signaling and altered the subcellular distribution of ß-catenin. Moreover, knockdown of FOXM1 showed that this transcription factor participates in this enhanced antitumoral response. Besides, the combined treatment decreased ß-catenin/FOXM1 interaction and reduced the cancer stem cell subpopulation in CRC cells, as indicated their diminished capacity to form colonospheres. Notably, the inmunodetection of FOXM1 in the nuclei of tumor cells in human colorectal adenocarcinomas was significantly associated with response of patients to cetuximab. In summary, our study shows that the addition of celecoxib enhances the antitumor efficacy of cetuximab in CRC due to impairment of EGFR-RAS-FOXM1-ß-catenin signaling axis. Results also support that FOXM1 could be a predictive marker of response of mCRC patients to cetuximab therapy.


Subject(s)
Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Celecoxib/pharmacology , Cetuximab/pharmacology , Colorectal Neoplasms/pathology , Signal Transduction/drug effects , Animals , Blotting, Western , Drug Synergism , ErbB Receptors/drug effects , ErbB Receptors/metabolism , Fluorescent Antibody Technique , Forkhead Box Protein M1/drug effects , Forkhead Box Protein M1/metabolism , Humans , Immunohistochemistry , Mice , Mice, Inbred NOD , Mice, SCID , Microscopy, Confocal , Xenograft Model Antitumor Assays , beta Catenin/drug effects , beta Catenin/metabolism , ras Proteins/drug effects , ras Proteins/metabolism
14.
15.
Front Immunol ; 7: 561, 2016.
Article in English | MEDLINE | ID: mdl-27994592

ABSTRACT

Killer-cell immunoglobulin-like receptors (KIRs) regulate the killing function of natural killer cells, which play an important role in the antibody-dependent cell-mediated cytotoxicity response exerted by therapeutic monoclonal antibodies (mAbs). However, it is unknown whether the extensive genetic variability of KIR genes and/or their human leukocyte antigen (HLA) ligands might influence the response to these treatments. This study aimed to explore whether the variability in KIR/HLA genes may be associated with the variable response observed to mAbs based anti-epidermal growth factor receptor (EGFR) therapies. Thirty-nine patients treated with anti-EGFR mAbs (trastuzumab for advanced breast cancer, or cetuximab for advanced colorectal or advanced head and neck cancer) were included in the study. All the patients had progressed to mAbs therapy and were grouped into two categories taking into account time to treatment failure (TTF ≤6 and ≥10 months). KIR genotyping (16 genetic variability) was performed in genomic DNA from peripheral blood by PCR sequence-specific primer technique, and HLA ligand typing was performed for HLA-B and -C loci by reverse polymerase chain reaction sequence-specific oligonucleotide methodology. Subjects carrying the KIR/HLA ligand combinations KIR2DS1/HLAC2C2-C1C2 and KIR3DS1/HLABw4w4-w4w6 showed longer TTF than non-carriers counterparts (14.76 vs. 3.73 months, p < 0.001 and 14.93 vs. 4.6 months, p = 0.005, respectively). No other significant differences were observed. Two activating KIR/HLA ligand combinations predict better response of patients to anti-EGFR therapy. These findings increase the overall knowledge on the role of specific gene variants related to responsiveness to anti-EGFR treatment in solid tumors and highlight the importance of assessing gene polymorphisms related to cancer medications.

16.
PLoS Genet ; 8(3): e1002619, 2012.
Article in English | MEDLINE | ID: mdl-22479207

ABSTRACT

Planarian flatworms are able to both regenerate their whole bodies and continuously adapt their size to nutrient status. Tight control of stem cell proliferation and differentiation during these processes is the key feature of planarian biology. Here we show that the planarian homolog of the phosphoinositide 3-kinase-related kinase (PIKK) family member SMG-1 and mTOR complex 1 components are required for this tight control. Loss of smg-1 results in a hyper-responsiveness to injury and growth and the formation of regenerative blastemas that remain undifferentiated and that lead to lethal ectopic outgrowths. Invasive stem cell hyper-proliferation, hyperplasia, hypertrophy, and differentiation defects are hallmarks of this uncontrolled growth. These data imply a previously unappreciated and novel physiological function for this PIKK family member. In contrast we found that planarian members of the mTOR complex 1, tor and raptor, are required for the initial response to injury and blastema formation. Double smg-1 RNAi experiments with tor or raptor show that abnormal growth requires mTOR signalling. We also found that the macrolide rapamycin, a natural compound inhibitor of mTORC1, is able to increase the survival rate of smg-1 RNAi animals by decreasing cell proliferation. Our findings support a model where Smg-1 acts as a novel regulator of both the response to injury and growth control mechanisms. Our data suggest the possibility that this may be by suppressing mTOR signalling. Characterisation of both the planarian mTORC1 signalling components and another PIKK family member as key regulators of regeneration and growth will influence future work on regeneration, growth control, and the development of anti-cancer therapies that target mTOR signalling.


Subject(s)
Planarians , Regeneration , Stem Cells , TOR Serine-Threonine Kinases/genetics , Animals , Cell Differentiation , Cell Proliferation/drug effects , Humans , Molecular Sequence Data , Phosphatidylinositol 3-Kinases/genetics , Planarians/genetics , Planarians/growth & development , RNA Interference/drug effects , Regeneration/genetics , Signal Transduction/drug effects , Sirolimus/pharmacology , Stem Cells/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
17.
Biometals ; 25(3): 517-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22391792

ABSTRACT

In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.


Subject(s)
Copper/pharmacology , Proteomics/methods , Rhodotorula/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Biodegradation, Environmental , Electrophoresis, Gel, Two-Dimensional , Rhodotorula/drug effects , Superoxide Dismutase/metabolism , beta-Glucosidase/metabolism
18.
Int J Dev Biol ; 56(1-3): 83-91, 2012.
Article in English | MEDLINE | ID: mdl-22252539

ABSTRACT

The development of a complex multicellular organism requires a careful coordination of growth, cell division, cell differentiation and cell death. All these processes must be under intricate and coordinated control, as they have to be integrated across all tissues. Freshwater planarians are especially plastic, in that they constantly replace somatic tissues from a pool of adult somatic stem cells and continuously undergo growth and degrowth as adult animals in response to nutrient availability. During these processes they appear to maintain perfect scale of tissues and organs. These life history traits make them an ideal model system to study growth and degrowth. We have studied the unique planarian process of degrowth. When food is not available, planarians are able to degrow to a minimum size, without any signs of adverse physiological outcomes. For example they maintain full regenerative capacity. Our current knowledge of how this is regulated at the molecular and cellular level is very limited. Planarian degrowth has been reported to result from a decrease in cell number rather than a decrease in cell size. Thus one obvious explanation for degrowth would be a decrease in stem cell proliferation. However evidence in the literature suggests this is not the case. We show that planarians maintain normal basal mitotic rates during degrowth but that the number of stem cell progeny decreases during starvation and degrowth. These observations are reversed upon feeding, indicating that they are dependent on nutritional status. An increase in cell death is also observed during degrowth, which is not rapidly reversed upon feeding. We conclude that degrowth is a result of cell death decreasing cell numbers and that the dynamics of neoblast self-renewal and differentiation adapt to nutrient conditions to allow maintenance of the neoblast population during the period of starvation.


Subject(s)
Cell Proliferation , Mitosis/physiology , Planarians/cytology , Planarians/physiology , Regeneration/physiology , Starvation , Stem Cells/physiology , Animals , Blotting, Western , Cell Death , Cell Differentiation , Immunoenzyme Techniques , In Situ Hybridization , Models, Biological , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Stem Cells/cytology
19.
Apoptosis ; 15(3): 279-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20069458

ABSTRACT

Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20-30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.


Subject(s)
Apoptosis , Autophagy , Planarians/cytology , Animals , Cytoprotection , Planarians/ultrastructure
20.
Int J Dev Biol ; 53(4): 493-505, 2009.
Article in English | MEDLINE | ID: mdl-19247960

ABSTRACT

miRNAs are an important class of non-protein coding small RNAs whose specific functions in animals are rapidly being elucidated. It is clear that miRNAs can play crucial roles in stem cell maintenance, cell fate determination and differentiation. We use planarians, which possess a large population of pluripotent somatic stem cells, as a powerful model system to study many aspects of stem cell biology and regeneration. In particular we wish to investigate the regulatory role miRNAs may have in planarian stem cell self renewal, proliferation and differentiation. Here, we characterized the differential spatial patterns of expression of miRNAs in whole and regenerating planarians by in situ hybridization to nascent miRNA transcripts. These miRNA expression patterns are the first which have been determined for a Lophotrocozoan animal. We have characterized the expression patterns of 42 miRNAs in adult planarians, constituting a complete range of tissue specific expression patterns. We also followed miRNA expression during planarian regeneration. The majority of planarian miRNAs were expressed either in areas where stem cells (neoblasts) are located and/or in the nervous system. Some miRNAs were definitively expressed in stem cells and dividing cells as confirmed by in situ hybridisation after irradiation. We also found miRNAs to be expressed in germ stem cells of the sexual strain. Together, these data suggest an important role for miRNAs in stem cell regulation and in neural cell differentiation in planarians.


Subject(s)
Gene Expression Regulation/genetics , Homeostasis/genetics , MicroRNAs/genetics , Planarians/genetics , Regeneration/genetics , Aging/physiology , Animals , Cell Nucleus Shape/genetics , Female , Male , Sexual Maturation , Stem Cells/metabolism , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...