Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Proc Natl Acad Sci U S A ; 117(39): 24415-24426, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913049

ABSTRACT

KRAS mutant lung adenocarcinomas remain intractable for targeted therapies. Genetic interrogation of KRAS downstream effectors, including the MAPK pathway and the interphase CDKs, identified CDK4 and RAF1 as the only targets whose genetic inactivation induces therapeutic responses without causing unacceptable toxicities. Concomitant CDK4 inactivation and RAF1 ablation prevented tumor progression and induced complete regression in 25% of KRAS/p53-driven advanced lung tumors, yet a significant percentage of those tumors that underwent partial regression retained a population of CDK4/RAF1-resistant cells. Characterization of these cells revealed two independent resistance mechanisms implicating hypermethylation of several tumor suppressors and increased PI3K activity. Importantly, these CDK4/RAF1-resistant cells can be pharmacologically controlled. These studies open the door to new therapeutic strategies to treat KRAS mutant lung cancer, including resistant tumors.


Subject(s)
Adenocarcinoma of Lung/genetics , Cyclin-Dependent Kinase 4/genetics , Lung Neoplasms/genetics , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Cyclin-Dependent Kinase 4/metabolism , Disease Progression , Drug Resistance, Neoplasm , Gene Silencing , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mutation , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics
3.
Cancer Cell ; 35(4): 573-587.e6, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30975481

ABSTRACT

Five-year survival for pancreatic ductal adenocarcinoma (PDAC) patients remains below 7% due to the lack of effective treatments. Here, we report that combined ablation of EGFR and c-RAF expression results in complete regression of a significant percentage of PDAC tumors driven by Kras/Trp53 mutations in genetically engineered mice. Moreover, systemic elimination of these targets induces toxicities that are well tolerated. Response to this targeted therapy correlates with transcriptional profiles that resemble those observed in human PDACs. Finally, inhibition of EGFR and c-RAF expression effectively blocked tumor progression in nine independent patient-derived xenografts carrying KRAS and TP53 mutations. These results open the door to the development of targeted therapies for PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Gefitinib/pharmacology , Pancreatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Animals , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Mutation , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Tumor Burden/drug effects , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
4.
Cancer Cell ; 33(2): 217-228.e4, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29395869

ABSTRACT

A quarter of all solid tumors harbor KRAS oncogenes. Yet, no selective drugs have been approved to treat these malignancies. Genetic interrogation of the MAPK pathway revealed that systemic ablation of MEK or ERK kinases in adult mice prevent tumor development but are unacceptably toxic. Here, we demonstrate that ablation of c-RAF expression in advanced tumors driven by KrasG12V/Trp53 mutations leads to significant tumor regression with no detectable appearance of resistance mechanisms. Tumor regression results from massive apoptosis. Importantly, systemic abrogation of c-RAF expression does not inhibit canonical MAPK signaling, hence, resulting in limited toxicities. These results are of significant relevance for the design of therapeutic strategies to treat K-RAS mutant cancers.


Subject(s)
Adenocarcinoma of Lung/genetics , Genes, ras/genetics , Mutation/genetics , Proto-Oncogene Proteins c-raf/metabolism , ras Proteins/genetics , Animals , Cell Line, Tumor , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics
5.
Nature ; 548(7666): 239-243, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28783725

ABSTRACT

The initiating oncogenic event in almost half of human lung adenocarcinomas is still unknown, a fact that complicates the development of selective targeted therapies. Yet these tumours harbour a number of alterations without obvious oncogenic function including BRAF-inactivating mutations. Inactivating BRAF mutants in lung predominate over the activating V600E mutant that is frequently observed in other tumour types. Here we demonstrate that the expression of an endogenous Braf(D631A) kinase-inactive isoform in mice (corresponding to the human BRAF(D594A) mutation) triggers lung adenocarcinoma in vivo, indicating that BRAF-inactivating mutations are initiating events in lung oncogenesis. Moreover, inactivating BRAF mutations have also been identified in a subset of KRAS-driven human lung tumours. Co-expression of Kras(G12V) and Braf(D631A) in mouse lung cells markedly enhances tumour initiation, a phenomenon mediated by Craf kinase activity, and effectively accelerates tumour progression when activated in advanced lung adenocarcinomas. We also report a key role for the wild-type Braf kinase in sustaining Kras(G12V)/Braf(D631A)-driven tumours. Ablation of the wild-type Braf allele prevents the development of lung adenocarcinoma by inducing a further increase in MAPK signalling that results in oncogenic toxicity; this effect can be abolished by pharmacological inhibition of Mek to restore tumour growth. However, the loss of wild-type Braf also induces transdifferentiation of club cells, which leads to the rapid development of lethal intrabronchiolar lesions. These observations indicate that the signal intensity of the MAPK pathway is a critical determinant not only in tumour development, but also in dictating the nature of the cancer-initiating cell and ultimately the resulting tumour phenotype.


Subject(s)
Adenocarcinoma/genetics , Loss of Function Mutation , Lung Neoplasms/genetics , Proto-Oncogene Proteins B-raf/genetics , Adenocarcinoma/pathology , Alleles , Animals , Carcinogenesis/genetics , Disease Progression , Female , Genes, Neurofibromatosis 1 , Humans , Lung Neoplasms/pathology , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism
6.
J Immunol ; 194(2): 719-27, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25505275

ABSTRACT

Infections are a significant cause of morbidity and mortality in patients with chronic lymphocytic leukemia (CLL). The pathogenesis of infections is multifactorial and includes hypogammaglobulinemia, conventional therapy with alkylating drugs, and recently, purine analogs and mAb-associated T cells. Patients without these risk factors also suffer from infections, although the mechanism remains unknown. In a cohort of 70 patients with CLL, we demonstrated that their monocytes were locked into a refractory state and were unable to mount a classic inflammatory response to pathogens. In addition, they exhibited the primary features of endotoxin tolerance, including low cytokine production, high phagocytic activity, and impaired Ag presentation. The involvement of miR-146a in this phenomenon was suspected. We found miR-146a target genes, such as IRAK1 and TRAF6, were manifestly downregulated. Our study provides a new explanation for infections in patients with CLL and describes a cross-tolerance between endotoxins and tumors.


Subject(s)
Immune Tolerance , Immunity, Innate , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Monocytes/immunology , T-Lymphocytes/immunology , Aged , Aged, 80 and over , Cytokines/immunology , Down-Regulation/immunology , Endotoxins/immunology , Female , Gene Expression Regulation, Leukemic/immunology , Humans , Interleukin-1 Receptor-Associated Kinases/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , MicroRNAs/immunology , Middle Aged , Monocytes/pathology , T-Lymphocytes/pathology , TNF Receptor-Associated Factor 6/immunology
7.
J Immunol ; 193(8): 4195-202, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25225662

ABSTRACT

Endotoxin tolerance (ET) is a state of reduced responsiveness to endotoxin stimulation after a primary bacterial insult. This phenomenon has been described in several pathologies, including sepsis, in which an endotoxin challenge results in reduced cytokine production. In this study, we show that the NFκ L chain enhancer of activated B cells 2 (NFκB2)/p100 was overexpressed and accumulated in a well-established in vitro human monocyte model of ET. The p100 accumulation in these cells inversely correlated with the inflammatory response after LPS stimulation. Knocking down NFκB2/p100 using small interfering RNA in human monocytes further indicated that p100 expression is a crucial factor in the progression of ET. The monocytes derived from patients with sepsis had high levels of p100, and a downregulation of NFκB2/p100 in these septic monocytes reversed their ET status.


Subject(s)
Endotoxins/immunology , Immune Tolerance , Monocytes/immunology , NF-kappa B p52 Subunit/biosynthesis , Sepsis/immunology , Aged , Down-Regulation , Gene Knockout Techniques , Humans , Inflammation/immunology , NF-kappa B p52 Subunit/genetics , RNA Interference , RNA, Small Interfering
8.
PLoS One ; 9(5): e95073, 2014.
Article in English | MEDLINE | ID: mdl-24797663

ABSTRACT

Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs), including mitochondrial DNA (mtDNA), induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET), is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI) exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.


Subject(s)
Cross Infection/blood , Cytokines/blood , DNA, Mitochondrial/blood , Endotoxins/blood , Myocardial Infarction/blood , Up-Regulation , Aged , Endotoxins/pharmacology , Female , Humans , Interleukin-1 Receptor-Associated Kinases/biosynthesis , Male , Middle Aged , Monocytes/metabolism , Monocytes/pathology , Myocardial Infarction/pathology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...