Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338620

ABSTRACT

Double emulsions (DEs) present promising applications as alternatives to conventional emulsions in the pharmaceutical, cosmetic, and food industries. However, most review articles have focused on the formulation, preparation approaches, physical stability, and release profile of encapsulants based on DEs, particularly water-in-oil-in-water (W1/O/W2), with less attention paid to specific food applications. Therefore, this review offers updated detailed research advances in potential food applications of both W1/O/W2 and oil-in-water-in-oil (O1/W/O2) DEs over the past decade. To this end, various food-relevant applications of DEs in the fortification; preservation (antioxidant and antimicrobial targets); encapsulation of enzymes; delivery and protection of probiotics; color stability; the masking of unpleasant tastes and odors; the development of healthy foods with low levels of fat, sugar, and salt; and design of novel edible packaging are discussed and their functional properties and release characteristics during storage and digestion are highlighted.

2.
Foods ; 8(7)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319521

ABSTRACT

Proteins represent one of the major food components that contribute to a wide range of biophysical functions and dictate the nutritional, sensorial, and shelf-life of food products. Different non-thermal processing technologies (e.g., irradiation, ultrasound, cold plasma, pulsed electric field, and high-pressure treatments) can affect the structure of proteins, and thus their solubility as well as their functional properties. The exposure of hydrophobic groups, unfolding followed by aggregation at high non-thermal treatment intensities, and the formation of new bonds have been reported to promote the modification of structural and functional properties of proteins. Several studies reported the reduction of allergenicity of some proteins after the application of non-thermal treatments. The composition and concentration of free amino acids could be changed after non-thermal processing, depending on the processing time and intensity. The present review discusses the effects of different non-thermal treatments on protein properties in detail, and highlights the opportunities and disadvantages of these technologies in relation to protein functionality.

3.
J Food Sci Technol ; 56(3): 1174-1183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30956297

ABSTRACT

This study was aimed to evaluate the antibacterial and antioxidant characteristics of incorporated pomegranate juice (PJ) and pomegranate rind powder extract (PRPE) into meat burgers. The peroxide value, thiobarbituric acid reactive substances, and metmyoglobin content for different burgers during 90 days storage at - 18 °C were evaluated. Total anthocyanin content, total phenolic content (TPC) and free radical scavenging activity (RSA or IC50) for PJ and PRPE were measured as 18.90 (mg/mL), 4380 ppm, 0.136 (mg/mL) and 0.40 (mg/mL), 5598 ppm, 0.084(mg/mL), respectively. Incorporation of PRPE with a high concentration of TPC resulted in less oxidation of lipid in comparison with other formulations. The highest and lowest scores in the sensory analysis and total acceptance at the 90th day corresponded to burgers containing PJ and control, respectively. Butylated hydroxytoluene may be substituted in whole or part with PJ and PRPE due to their desired effects on burgers' properties.

4.
Food Sci Nutr ; 7(2): 519-527, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847130

ABSTRACT

In this work, binding characteristics of two hydrophilic nutraceutical models, namely epigallocatechin gallate (EGCG) and folic acid (FA), to sodium caseinate were studied by fluorimetry technique. EGCG-loaded casein molecules were then converted to either re-combined casein micelles (r-CMs) or casein nanoparticles (CNPs). Binding stoichiometry of EGCG and FA was 0.81 and 1.02, respectively. As determined by DLS technique, the average particle size of r-CMs prepared at 0.5% concentration was 66.2 nm. Thermal treatment (74°C, 20 s) had significant (p < 0.05) influence on the particle size of nanocarriers, but not nutraceutical loading. The average size of CNPs was larger than that of r-CMs. The encapsulation efficiency (EE) of EGCG was 85%, and its ejection from the nanocarrier was less than 3% over 21 days. Alkaline conditions resulted in higher release of EGCG than acidic conditions. r-CMs were more effective than CNPs during the protection of EGCG against heat-induced degradation. TEM micrographs confirmed the formation of r-CMs.

5.
Int J Biol Macromol ; 114: 1-9, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29555510

ABSTRACT

The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pHopt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Gelatin/chemistry , Membranes, Artificial , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
6.
Int J Biol Macromol ; 86: 242-9, 2016 May.
Article in English | MEDLINE | ID: mdl-26808017

ABSTRACT

Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties.


Subject(s)
Gelatin/chemistry , Hypromellose Derivatives/chemistry , Product Packaging/methods , Water/chemistry , Emulsions , Mechanical Phenomena , Permeability , Solubility , Thermodynamics , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...