Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 98, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679694

ABSTRACT

BACKGROUND: The ability of animals to regenerate damaged tissue is a complex process that involves various cellular mechanisms. As animals age, they lose their regenerative abilities, making it essential to understand the underlying mechanisms that limit regenerative ability during aging. Drosophila melanogaster wing imaginal discs are epithelial structures that can regenerate after tissue injury. While significant research has focused on investigating regenerative responses during larval stages our comprehension of the regenerative potential of pupal wings and the underlying mechanisms contributing to the decline of regenerative responses remains limited. RESULTS: Here, we explore the temporal dynamics during pupal development of the proliferative response triggered by the induction of cell death, a typical regenerative response. Our results indicate that the apoptosis-induced proliferative response can continue until 34 h after puparium formation (APF), beyond this point cell death alone is not sufficient to induce a regenerative response. Under normal circumstances, cell proliferation ceases around 24 h APF. Interestingly, the failure of reinitiating the cell cycle beyond this time point is not attributed to an incapacity to activate the JNK pathway. Instead, our results suggest that the function of the ecdysone-responsive transcription factor E93 is involved in limiting the apoptosis-induced proliferative response during pupal development. CONCLUSIONS: Our study shows that apoptosis can prolong the proliferative period of cells in the wing during pupal development as late as 34 h APF, at least 10 h longer than during normal development. After this time point, the regenerative response is diminished, a process mediated in part by the ecdysone-responsive transcription factor E93.


Subject(s)
Apoptosis , Cell Proliferation , Drosophila Proteins , Drosophila melanogaster , Pupa , Regeneration , Transcription Factors , Wings, Animal , Animals , Wings, Animal/growth & development , Wings, Animal/physiology , Drosophila melanogaster/physiology , Drosophila melanogaster/growth & development , Pupa/growth & development , Pupa/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Regeneration/physiology
2.
Development ; 151(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38512712

ABSTRACT

The formation of complex three-dimensional organs during development requires precise coordination between patterning networks and mechanical forces. In particular, tissue folding is a crucial process that relies on a combination of local and tissue-wide mechanical forces. Here, we investigate the contribution of cell proliferation to epithelial morphogenesis using the Drosophila leg tarsal folds as a model. We reveal that tissue-wide compression forces generated by cell proliferation, in coordination with the Notch signaling pathway, are essential for the formation of epithelial folds in precise locations along the proximo-distal axis of the leg. As cell numbers increase, compressive stresses arise, promoting the folding of the epithelium and reinforcing the apical constriction of invaginating cells. Additionally, the Notch target dysfusion plays a key function specifying the location of the folds, through the apical accumulation of F-actin and the apico-basal shortening of invaginating cells. These findings provide new insights into the intricate mechanisms involved in epithelial morphogenesis, highlighting the crucial role of tissue-wide forces in shaping a three-dimensional organ in a reproducible manner.


Subject(s)
Cell Proliferation , Drosophila Proteins , Drosophila , Receptors, Notch , Animals , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epithelium/metabolism , Morphogenesis/genetics , Signal Transduction , Receptors, Notch/metabolism
3.
Cell Death Discov ; 9(1): 281, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532716

ABSTRACT

Programmed cell death (apoptosis) is a homeostasis program of animal tissues designed to remove cells that are unwanted or are damaged by physiological insults. To assess the functional role of apoptosis, we have studied the consequences of subjecting Drosophila epithelial cells defective in apoptosis to stress or genetic perturbations that normally cause massive cell death. We find that many of those cells acquire persistent activity of the JNK pathway, which drives them into senescent status, characterized by arrest of cell division, cell hypertrophy, Senescent Associated ß-gal activity (SA-ß-gal), reactive oxygen species (ROS) production, Senescent Associated Secretory Phenotype (SASP) and migratory behaviour. We have identified two classes of senescent cells in the wing disc: 1) those that localize to the appendage part of the disc, express the upd, wg and dpp signalling genes and generate tumour overgrowths, and 2) those located in the thoracic region do not express wg and dpp nor they induce tumour overgrowths. Whether to become tumorigenic or non-tumorigenic depends on the original identity of the cell prior to the transformation. We also find that the p53 gene contributes to senescence by enhancing the activity of JNK.

5.
Front Cell Dev Biol ; 10: 993257, 2022.
Article in English | MEDLINE | ID: mdl-36147740

ABSTRACT

Cells have evolved mechanisms that allow them to respond to DNA damage to preserve genomic integrity and maintain tissue homeostasis. These responses include the activation of the cell cycle checkpoints and the repair mechanisms or the induction of apoptosis that eventually will eliminate damaged cells. These "life" vs. "death" decisions differ depending on the cell type, stages of development, and the proliferation status of the cell. The apoptotic response after DNA damage is of special interest as defects in its induction could contribute to tumorigenesis or the resistance of cancer cells to therapeutic agents such as radiotherapy. Multiples studies have elucidated the molecular mechanisms that mediate the activation of the DNA damage response pathway (DDR) and specifically the role of p53. However, much less is known about how the different cellular responses such as cell proliferation control and apoptosis are coordinated to maintain tissue homeostasis. Another interesting question is how the differential apoptotic response to DNA damage is regulated in distinct cell types. The use of Drosophila melanogaster as a model organism has been fundamental to understand the molecular and cellular mechanisms triggered by genotoxic stress. Here, we review the current knowledge regarding the cellular responses to ionizing radiation as the cause of DNA damage with special attention to apoptosis in Drosophila: how these responses are regulated and coordinated in different cellular contexts and in different tissues. The existence of intrinsic mechanisms that might attenuate the apoptotic pathway in response to this sort of DNA damage may well be informative for the differences in the clinical responsiveness of tumor cells after radiation therapy.

6.
Dev Neurobiol ; 82(6): 495-504, 2022 09.
Article in English | MEDLINE | ID: mdl-35796156

ABSTRACT

A striking feature of the nervous system pertains to the appearance of different neural cell subtypes at different axial levels. Studies in the Drosophila central nervous system reveal that one mechanism underlying such segmental differences pertains to the segment-specific removal of cells by programmed cell death (PCD). One group of genes involved in segment-specific PCD is the Hox homeotic genes. However, while segment-specific PCD is highly precise, Hox gene expression is evident in gradients, raising the issue of how the Hox gene function is precisely gated to trigger PCD in specific segments at the outer limits of Hox expression. The Drosophila Va neurons are initially generated in all nerve cord segments but removed by PCD in posterior segments. Va PCD is triggered by the posteriorly expressed Hox gene Abdominal-B (Abd-B). However, Va PCD is highly reproducible despite exceedingly weak Abd-B expression in the anterior frontiers of its expression. Here, we found that the transcriptional cofactor Dachshund supports Abd-B-mediated PCD in its anterior domain. In vivo bimolecular fluorescence complementation analysis lends support to the idea that the Dachshund/Abd-B interplay may involve physical interactions. These findings provide an example of how combinatorial codes of transcription factors ensure precision in Hox-mediated PCD in specific segments at the outer limits of Hox expression.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Apoptosis , Central Nervous System/metabolism , Dogs , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Cell Death Differ ; 29(4): 832-845, 2022 04.
Article in English | MEDLINE | ID: mdl-34824391

ABSTRACT

Exposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These "life" or "death" cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development. However, how cell cycle progression has an impact on p53 cell fate decision-making is mostly unknown. In this work, we demonstrate that Drosophila p53 proapoptotic activity can be impacted by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation-induced apoptosis. We show that p53 binding to the regulatory elements of the proapoptotic genes and its ability to activate their expression is compromised in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 proapoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 proapoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.


Subject(s)
Drosophila , Tumor Suppressor Protein p53 , Animals , Apoptosis/genetics , Cell Cycle/genetics , Cell Proliferation/genetics , DNA Damage , Drosophila/metabolism , Tumor Suppressor Protein p53/metabolism
8.
Front Cell Dev Biol ; 9: 723927, 2021.
Article in English | MEDLINE | ID: mdl-34409041

ABSTRACT

Appendage development requires the coordinated function of signaling pathways and transcription factors to pattern the leg along the three main axes: the antero-posterior (AP), proximo-distal (PD), and dorso-ventral (DV). The Drosophila leg DV axis is organized by two morphogens, Decapentaplegic (Dpp), and Wingless (Wg), which direct dorsal and ventral cell fates, respectively. However, how these signals regulate the differential expression of its target genes is mostly unknown. In this work, we found that two members of the Drosophila forkhead family of transcription factors, Fd4 and Fd5 (also known as fd96Ca and fd96Cb), are identically expressed in the ventro-lateral domain of the leg imaginal disc in response to Dpp signaling. Here, we analyze the expression regulation and function of these genes during leg development. We have generated specific mutant alleles for each gene and a double fd4/fd5 mutant chromosome to study their function during development. We highlight the redundant role of the fd4/fd5 genes during the formation of the sex comb, a male specific structure that appears in the ventro-lateral domain of the prothoracic leg.

9.
PLoS Biol ; 19(8): e3001367, 2021 08.
Article in English | MEDLINE | ID: mdl-34379617

ABSTRACT

Damage in the nervous system induces a stereotypical response that is mediated by glial cells. Here, we use the eye disc of Drosophila melanogaster as a model to explore the mechanisms involved in promoting glial cell response after neuronal cell death induction. We demonstrate that these cells rapidly respond to neuronal apoptosis by increasing in number and undergoing morphological changes, which will ultimately grant them phagocytic abilities. We found that this glial response is controlled by the activity of Decapentaplegic (Dpp) and Hedgehog (Hh) signalling pathways. These pathways are activated after cell death induction, and their functions are necessary to induce glial cell proliferation and migration to the eye discs. The latter of these 2 processes depend on the function of the c-Jun N-terminal kinase (JNK) pathway, which is activated by Dpp signalling. We also present evidence that a similar mechanism controls glial response upon apoptosis induction in the leg discs, suggesting that our results uncover a mechanism that might be involved in controlling glial cells response to neuronal cell death in different regions of the peripheral nervous system (PNS).


Subject(s)
Compound Eye, Arthropod/growth & development , Drosophila Proteins/physiology , Drosophila melanogaster/growth & development , Hedgehog Proteins/physiology , Neuroglia/physiology , Animals , Apoptosis , Cell Movement , Compound Eye, Arthropod/cytology , Drosophila melanogaster/cytology , MAP Kinase Signaling System
10.
Dev Biol ; 466(1-2): 77-89, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32738261

ABSTRACT

The Sp family of transcription factors plays important functions during development and disease. An evolutionary conserved role for some Sp family members is the control of limb development. The family is characterized by the presence of three C2H2-type zinc fingers and an adjacent 10 aa region with an unknown function called the Buttonhead (BTD) box. The presence of this BTD-box in all Sp family members identified from arthropods to vertebrates, suggests that it plays an essential role during development. However, despite its conservation, the in vivo function of the BTD-box has never been studied. In this work, we have generated specific BTD-box deletion alleles for the Drosophila Sp family members Sp1 and buttonhead (btd) using gene editing tools and analyzed its role during development. Unexpectedly, btd and Sp1 mutant alleles that lack the BTD-box are viable and have almost normal appendages. However, in a sensitized background the requirement of this domain to fully regulate some of Sp1 and Btd target genes is revealed. Furthermore, we have also identified a novel Sp1 role promoting leg vs antenna identity through the repression of spineless (ss) expression in the leg, a function that also depends on the Sp1 BTD-box.


Subject(s)
Arthropod Antennae/embryology , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Sp1 Transcription Factor/metabolism , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Deletion , Sp1 Transcription Factor/genetics , Transcription Factors/genetics
11.
Adv Exp Med Biol ; 1218: 103-127, 2020.
Article in English | MEDLINE | ID: mdl-32060874

ABSTRACT

Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Extremities/embryology , Morphogenesis , Receptors, Notch/metabolism , Signal Transduction , Animals
12.
PLoS Genet ; 14(8): e1007584, 2018 08.
Article in English | MEDLINE | ID: mdl-30080872

ABSTRACT

The mechanisms that control tissue patterning and cell behavior are extensively studied separately, but much less is known about how these two processes are coordinated. Here we show that the Drosophila transcription factor Dysfusion (Dysf) directs leg epithelial folding and joint formation through the regulation of Rho1 activity. We found that Dysf-induced Rho1 activity promotes apical constriction specifically in folding epithelial cells. Here we show that downregulation of Rho1 or its downstream effectors cause defects in fold and joint formation. In addition, Rho1 and its effectors are sufficient to induce the formation of epithelial folds when misexpressed in a flat epithelium. Furthermore, as apoptotic cells can actively control tissue remodeling, we analyzed the role of cell death in the formation of tarsal folds and its relation to Rho1 activity. Surprisingly, we found no defects in this process when apoptosis is inhibited. Our results highlight the coordination between a patterning transcription factor and the cellular processes that cause the cell shape changes necessary to sculpt a flat epithelium into a three dimensional structure.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Drosophila Proteins/physiology , Drosophila/embryology , Morphogenesis/genetics , rho GTP-Binding Proteins/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Polarity , Cell Shape , Drosophila/genetics , Drosophila Proteins/genetics , Epithelial Cells/physiology , Epithelium/physiology , Gene Expression Regulation , Promoter Regions, Genetic , Protein Folding , rho GTP-Binding Proteins/genetics
13.
J Dev Biol ; 6(3)2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30011921

ABSTRACT

Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.

14.
Curr Biol ; 27(24): 3826-3836.e5, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29225023

ABSTRACT

The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg. Here, we address this question by studying how wing fates are initially specified during Drosophila embryogenesis, by characterizing a cis-regulatory module (CRM) from the snail (sna) gene, sna-DP (for dorsal primordia). sna-DP specifically marks the early primordia for both the wing and haltere, collectively referred to as the DP. We found that the inputs that activate sna-DP are distinct from those that activate Distalless, a marker for leg fates. Further, in genetic backgrounds in which the leg primordia are absent, the DP are still partially specified. However, lineage-tracing experiments demonstrate that cells from the early leg primordia contribute to both ventral and dorsal appendage fates. Together, these results suggest that the wings of Drosophila have a dual developmental origin: two groups of cells, one ventral and one more dorsal, give rise to the mature wing. We suggest that the dual developmental origins of the wing may be a molecular remnant of the evolutionary history of this appendage, in which cells of the subcoxa of the leg coalesced with dorsal outgrowths to evolve a dorsal appendage with motor control.


Subject(s)
Drosophila melanogaster/embryology , Wings, Animal/embryology , Animals , Cell Lineage , Gene Expression Regulation, Developmental , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
15.
Development ; 143(19): 3623-3631, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27578786

ABSTRACT

The appendages of arthropods and vertebrates are not homologous structures, although the underlying genetic mechanisms that pattern them are highly conserved. Members of the Sp family of transcription factors are expressed in the developing limbs and their function is required for limb growth in both insects and chordates. Despite the fundamental and conserved role that these transcription factors play during appendage development, their target genes and the mechanisms by which they participate in control limb growth are mostly unknown. We analyzed here the individual contributions of two Drosophila Sp members, buttonhead (btd) and Sp1, during leg development. We show that Sp1 plays a more prominent role controlling leg growth than does btd We identified a regulatory function of Sp1 in Notch signaling, and performed a genome-wide transcriptome analysis to identify other potential Sp1 target genes contributing to leg growth. Our data suggest a mechanism by which the Sp factors control appendage growth through the Notch signaling.


Subject(s)
Drosophila Proteins/metabolism , Receptors, Notch/metabolism , Sp1 Transcription Factor/metabolism , Animals , Chromatin Immunoprecipitation , Drosophila , Drosophila Proteins/genetics , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Male , Receptors, Notch/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Sp1 Transcription Factor/genetics
16.
PLoS Genet ; 11(10): e1005376, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26468882

ABSTRACT

The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/genetics , Regulatory Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Animals , Body Patterning/genetics , Cell Lineage , Drosophila Proteins/biosynthesis , Drosophila melanogaster/growth & development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , Imaginal Discs/growth & development , LIM-Homeodomain Proteins/biosynthesis , Transcription Factors/biosynthesis , Wings, Animal/growth & development
17.
PLoS Genet ; 10(10): e1004621, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329825

ABSTRACT

A characteristic of all arthropods is the presence of flexible structures called joints that connect all leg segments. Drosophila legs include two types of joints: the proximal or "true" joints that are motile due to the presence of muscle attachment and the distal joints that lack musculature. These joints are not only morphologically, functionally and evolutionarily different, but also the morphogenetic program that forms them is distinct. Development of both proximal and distal joints requires Notch activity; however, it is still unknown how this pathway can control the development of such homologous although distinct structures. Here we show that the bHLH-PAS transcription factor encoded by the gene dysfusion (dys), is expressed and absolutely required for tarsal joint development while it is dispensable for proximal joints. In the presumptive tarsal joints, Dys regulates the expression of the pro-apoptotic genes reaper and head involution defective and the expression of the RhoGTPases modulators, RhoGEf2 and RhoGap71E, thus directing key morphogenetic events required for tarsal joint development. When ectopically expressed, dys is able to induce some aspects of the morphogenetic program necessary for distal joint development such as fold formation and programmed cell death. This novel Dys function depends on its obligated partner Tango to activate the transcription of target genes. We also identified a dedicated dys cis-regulatory module that regulates dys expression in the tarsal presumptive leg joints through direct Su(H) binding. All these data place dys as a key player downstream of Notch, directing distal versus proximal joint morphogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Extremities/growth & development , Receptors, Notch/metabolism , Tarsal Joints/growth & development , Animals , Animals, Genetically Modified , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Cycle Proteins , Drosophila/growth & development , Extremities/physiology , Gene Expression Regulation, Developmental , Larva/genetics , Larva/growth & development , Neuropeptides/genetics , Neuropeptides/metabolism , Receptors, Notch/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
18.
Cell Rep ; 2(4): 1014-24, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23063361

ABSTRACT

Over 6,000 fragments from the genome of Drosophila melanogaster were analyzed for their ability to drive expression of GAL4 reporter genes in the third-instar larval imaginal discs. About 1,200 reporter genes drove expression in the eye, antenna, leg, wing, haltere, or genital imaginal discs. The patterns ranged from large regions to individual cells. About 75% of the active fragments drove expression in multiple discs; 20% were expressed in ventral, but not dorsal, discs (legs, genital, and antenna), whereas ∼23% were expressed in dorsal but not ventral discs (wing, haltere, and eye). Several patterns, for example, within the leg chordotonal organ, appeared a surprisingly large number of times. Unbiased searches for DNA sequence motifs suggest candidate transcription factors that may regulate enhancers with shared activities. Together, these expression patterns provide a valuable resource to the community and offer a broad overview of how transcriptional regulatory information is distributed in the Drosophila genome.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Genome , Imaginal Discs/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Arthropod Antennae/metabolism , Blastodisc/metabolism , Databases, Factual , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Eye/metabolism , Genes, Reporter , Regulatory Elements, Transcriptional , Transcription Factors/genetics , Wings, Animal/metabolism
19.
PLoS One ; 7(7): e41080, 2012.
Article in English | MEDLINE | ID: mdl-22911744

ABSTRACT

Decidualization is a morphological and biochemical transformation of endometrial stromal fibroblast into differentiated decidual cells, which is critical for embryo implantation and pregnancy establishment. The complex regulatory networks have been elucidated at both the transcriptome and the proteome levels, however very little is known about the post-transcriptional regulation of this process. miRNAs regulate multiple physiological pathways and their de-regulation is associated with human disorders including gynaecological conditions such as endometriosis and preeclampsia. In this study we profile the miRNAs expression throughout human endometrial stromal (hESCs) decidualization and analyze the requirement of the miRNA biogenesis enzyme Dicer during this process. A total of 26 miRNAs were upregulated and 17 miRNAs downregulated in decidualized hESCs compared to non-decidualized hESCs. Three miRNAs families, miR-181, miR-183 and miR-200, are down-regulated during the decidualization process. Using miRNAs target prediction algorithms we have identified the potential targets and pathways regulated by these miRNAs. The knockdown of Dicer has a minor effect on hESCs during in vitro decidualization. We have analyzed a battery of decidualization markers such as cell morphology, Prolactin, IGFBP-1, MPIF-1 and TIMP-3 secretion as well as HOXA10, COX2, SP1, C/EBPß and FOXO1 expression in decidualized hESCs with decreased Dicer function. We found decreased levels of HOXA10 and altered intracellular organization of actin filaments in Dicer knockdown decidualized hESCs compared to control. Our results provide the miRNA signature of hESC during the decidualization process in vitro. We also provide the first functional characterization of Dicer during human endometrial decidualization although surprisingly we found that Dicer plays a minor role regulating this process suggesting that alternative biogenesis miRNAs pathways must be involved in human endometrial decidualization.


Subject(s)
Decidua/cytology , Decidua/metabolism , Gene Expression Profiling , MicroRNAs/genetics , Ribonuclease III/metabolism , Stromal Cells/cytology , Stromal Cells/metabolism , Adult , Cell Differentiation/genetics , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Homeobox A10 Proteins , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Insulin-Like Growth Factor Binding Protein 1/metabolism , Young Adult
20.
FASEB J ; 26(9): 3715-27, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22645245

ABSTRACT

Annexin A2 (ANXA2) is present in vivo in the mid- and late-secretory endometria and is mainly localized in the luminal epithelium. Our aim was to evaluate its function in regulating the human implantation process. With an in vitro adhesion model, constructed to evaluate how the mouse embryo and JEG-3 spheroids attach to human endometrial epithelial cells, we demonstrated that ANXA2 inhibition significantly diminishes embryo adhesiveness. ANXA2 is also implicated in endometrial epithelial cell migration and trophoblast outgrowth. ANXA2 was seen to be linked to the RhoA/ROCK pathway and to regulate cell adhesion. We noted that ANXA2 inhibition significantly reduces active RhoA, although RhoA inactivation does not alter the ANXA2 levels. RhoA inactivation and ROCK inhibition also moderate embryo adhesiveness to endometrial epithelial cells. We corroborated that the induction of constitutively active RhoA partially reverses the effects of ANXA2 inhibition on endometrial adhesiveness. These molecules colocalize on the plasma membrane of endometrial epithelial cells, and a large proportion of ANXA2 and RhoA are colocalized in the F-actin networks. The functional effects of ANXA2 inhibition and RhoA/ROCK inactivation are associated with significant alterations in F-actin organization and its depolymerization. ANXA2 may act upstream of the RhoA/ROCK pathway by regulating F-actin remodeling and is a key factor in human endometrial adhesiveness.


Subject(s)
Actins/physiology , Annexin A2/physiology , Embryo Implantation , Endometrium/cytology , rhoA GTP-Binding Protein/physiology , Adolescent , Adult , Annexin A2/antagonists & inhibitors , Base Sequence , Cells, Cultured , DNA Primers , Female , Humans , RNA, Small Interfering , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...