Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36168495

ABSTRACT

Objective: The National Healthcare Safety Network (NHSN) Antibiotic Resistance (AR) Option is a valuable tool that can be used by acute-care hospitals to track and report antibiotic resistance rate data. Selective and cascading reporting results in suppressed antibiotic susceptibility results and has the potential to adversely affect what data are submitted into the NHSN AR Option. We describe the effects of antibiotic suppression on NHSN AR Option data. Methods: NHSN AR Option data were collected from 14 hospitals reporting into an existing NHSN user group from January 1, 2017, to December 31, 2018, and linked to commercial automated antimicrobial susceptibility testing instruments (cASTI) that were submitted as part of unrelated Tennessee Emerging Infections Program surveillance projects. A susceptibility result was defined as suppressed if the result was not found in the NHSN AR Option data but was reported in the cASTI data. Susceptibility results found in both data sets were described as released. Proportions of suppressed and released results were compared using the Pearson χ2 and Fisher exact tests. Results: In total, 852 matched isolates with 3,859 unique susceptibilities were available for analysis. At least 1 suppressed antibiotic susceptibility result was available for 726 (85.2%) of the isolates. Of the 3,859 susceptibility results, 1,936 (50.2%) suppressed antibiotic susceptibility results were not reported into the NHSN AR option when compared to the cASTI data. Conclusion: The effect of antibiotic suppression described in this article has significant implications for the ability of the NHSN AR Option to accurately reflect antibiotic resistance rates.

2.
Forensic Sci Int Genet ; 8(1): 147-58, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24315603

ABSTRACT

Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (µTAS) for rapid DNA analysis.


Subject(s)
Forensic Genetics , Microfluidics/instrumentation , Feasibility Studies , Microsatellite Repeats/genetics , Polymerase Chain Reaction
3.
Phys Chem Chem Phys ; 15(31): 12805-14, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23636584

ABSTRACT

We report an on-chip gradient generator that has been designed, modelled, fabricated, and characterized to facilitate temporal tuning of several unique gradients in parallel for multiple applications. This design allows for steady state programming of the intensities across multiple orders of magnitude while producing exponential, linear, and logarithmic gradient profiles. The magnitude of the gradients is controlled through regulating the ratio of the two on-chip flow inlets without the need for valves or other active mixers. On-chip binding of biotin by a fluorescent streptavidin complex creates a diffusive barrier that regulates access to the gradient inlets, providing a second orthogonal mechanism for regulating the microgradient intensities. The device is also characterized using an on-chip enzymatic reaction to produce an array of tuneable product concentrations within the various microchannels.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Equipment Design
4.
Analyst ; 137(23): 5510-9, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-22970426

ABSTRACT

This study reports the design, prototyping, and assay development of multiplexed polymerase chain reaction (PCR) on a plastic microfluidic device. Amplification of 17 DNA loci is carried out directly on-chip as part of a system for continuous workflow processing from sample preparation (SP) to capillary electrophoresis (CE). For enhanced performance of on-chip PCR amplification, improved control systems have been developed making use of customized Peltier assemblies, valve actuators, software, and amplification chemistry protocols. Multiple enhancements to the microfluidic chip design have been enacted to improve the reliability of sample delivery through the various on-chip modules. This work has been enabled by the encapsulation of PCR reagents into a solid phase material through an optimized Solid Phase Encapsulating Assay Mix (SPEAM) bead-based hydrogel fabrication process. SPEAM bead technology is reliably coupled with precise microfluidic metering and dispensing for efficient amplification and subsequent DNA short tandem repeat (STR) fragment analysis. This provides a means of on-chip reagent storage suitable for microfluidic automation, with the long shelf-life necessary for point-of-care (POC) or field deployable applications. This paper reports the first high quality 17-plex forensic STR amplification from a reference sample in a microfluidic chip with preloaded solid phase reagents, that is designed for integration with up and downstream processing.


Subject(s)
DNA/analysis , Microfluidic Analytical Techniques/instrumentation , Multiplex Polymerase Chain Reaction/methods , Forensic Sciences , Humans , Microsatellite Repeats , Point-of-Care Systems
5.
Electrophoresis ; 33(16): 2604-11, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22899270

ABSTRACT

We report the design and performance validation of microfluidic separation technologies for human identification using a disposable plastic device suitable for integration into an automated rapid DNA analysis system. A fabrication process for a 15-cm long hot-embossed plastic microfluidic devices with a smooth semielliptical cross section out of cyclic olefin copolymer is presented. We propose a mixed polymer solution of 95% w/v hydroxyethylcellulose and 5% w/v polyvinylpyrrolidone for a final polymer concentration of 2.5 or 3.0% to be used as coating and sieving matrix for DNA separation. This formulation allows preparing the microchip without pretreatment in a single-loading step and provides high-resolution separation (≈1.2 bp for fragments <200 bp), which is superior to existing commercial matrices under the same conditions. The hot-embossed device performance is characterized and compared to injection-molded devices made out of cyclic olefin copolymer based on their respective injector geometry, channel shape, and surface charges. Each device design is assessed by fluorescence videomicroscopy to evaluate the formation of injection plugs, then by comparing electropherograms for the separation of a DNA size standard relevant to human identification.


Subject(s)
DNA/analysis , Electrophoresis, Capillary/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Povidone/chemistry , DNA/isolation & purification , Electrophoresis, Capillary/methods , Equipment Design , Humans , Kinetics , Spectrometry, Fluorescence
6.
Electrophoresis ; 31(21): 3510-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20931618

ABSTRACT

The microfluidic integration of an entire DNA analysis workflow on a fully integrated miniaturized instrument is reported using lab-on-a-chip automation to perform DNA fingerprinting compatible with CODIS standard relevant to the forensic community. The instrument aims to improve the cost, duration, and ease of use to perform a "sample-to-profile" analysis with no need for human intervention. The present publication describes the operation of the three major components of the system: the electronic control components, the microfluidic cartridge and CE microchip, and the optical excitation/detection module. Experimental details are given to characterize the level of performance, stability, reliability, accuracy, and sensitivity of the prototype system. A typical temperature profile from a PCR amplification process and an electropherogram of a commercial size standard (GeneScan 500™, Applied Biosystems) separation are shown to assess the relevance of the instrument to forensic applications. Finally, we present a profile from an automated integrated run where lysed cells from a buccal swab were introduced in the system and no further human intervention was required to complete the analysis.


Subject(s)
Electrophoresis, Capillary/methods , Microfluidic Analytical Techniques/instrumentation , Microsatellite Repeats , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/instrumentation , Cheek , DNA/chemistry , DNA/isolation & purification , Forensic Genetics/methods , Humans , Microfluidic Analytical Techniques/methods , Mouth Mucosa/cytology , Reproducibility of Results , Sequence Analysis, DNA/methods , Temperature
7.
Anal Chem ; 82(16): 6991-9, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20704389

ABSTRACT

We demonstrate a conduit for the delivery of a step change in the DNA analysis process: A fully integrated instrument for the analysis of multiplex short tandem repeat DNA profiles from reference buccal samples is described and is suitable for the processing of such samples within a forensic environment such as a police custody suite or booking office. The instrument is loaded with a DNA processing cartridge which incorporates on-board pumps and valves which direct the delivery of sample and reagents to the various reaction chambers to allow DNA purification, amplification of the DNA by PCR, and collection of the amplified product for delivery to an integral CE chip. The fluorescently labeled product is separated using micro capillary electrophoresis with a resolution of 1.2 base pairs (bp) allowing laser induced fluorescence-based detection of the amplified short tandem repeat fragments and subsequent analysis of data to produce a DNA profile which is compatible with the data format of the UK DNA database. The entire process from taking the sample from a suspect, to database compatible DNA profile production can currently be achieved in less than 4 h. By integrating such an instrument and microfluidic cartridge with the forensic process, we believe it will be possible in the near future to process a DNA sample taken from an individual in police custody and compare the profile with the DNA profiles held on a DNA Database in as little as 3 h.


Subject(s)
DNA/analysis , Forensic Genetics/methods , Microfluidic Analytical Techniques/methods , Databases, Nucleic Acid , Polymerase Chain Reaction , Specimen Handling , Time Factors
8.
Biomed Microdevices ; 11(2): 509-15, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19082734

ABSTRACT

This paper presents an on-chip magnetic cell sorting system for the sorting of cells based on a variety of surface markers. A polymer lab on a chip integrated with an electroplated array of Ni/Fe permalloy has been designed, fabricated, and characterized for the separation of cell substitutes at a variety of flow rates and incubation times. The system sequentially labels cell substitutes with magnetic beads and sorts them, repeating this process to sort for a variety of surface markers. Flow rates and incubation times were varied to characterize the system and produce the best combination of high specific capture and low nonspecific capture. The separation system developed on polymer is selective and efficient while being low cost, portable, and fabricated in a modular structure that can be integrated with other cell handling processes.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Separation/instrumentation , Immunomagnetic Separation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Cell Culture Techniques/methods , Equipment Design , Equipment Failure Analysis , Microfluidic Analytical Techniques/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...