Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Nat Prod Res ; 33(17): 2566-2570, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29611435

ABSTRACT

In this study, the chemical composition and antibacterial and antiproliferative potential of the essential oil obtained from fresh leaves of Psidium myrtoides (PM-EO) against oral pathogens and human tumour cell lines were investigated for the first time. GC-FID and GC-MS analyses showed that trans-ß-caryophyllene (30.9%), α-humulene (15.9%), α-copaene (7.8%), caryophyllene oxide (7.3%) and α-bisabolol (5.3%) are the major constituents of PM-EO. The antibacterial activity of PM-EO against a panel of oral pathogens was investigated in terms of their minimal inhibitory concentrations (MIC) using the broth microdilution method. PM-EO displayed moderate activity against Streptococcus mitis (MIC = 100 µg/mL), S. sanguinis (MIC = 100 µg/mL), S. sobrinus (MIC = 250 µg/mL), and S. salivarius (MIC = 250 µg/mL), and strong activity against S. mutans (MIC = 62.5 µg/mL). The antiproliferative activity in normal (GM07492A, lung fibroblasts) and tumour cell lines (MCF-7, HeLa, and M059 J) was performed using the XTT assay. PM-EO showed 50% inhibition of normal cell growth at 359.8 ± 6.3 µg/mL. Antiproliferative activity was observed against human tumour cell lines, with IC50 values significantly lower than that obtained for the normal cell line, demonstrating IC50 values for MCF-7 cells (254.5 ± 1.6 µg/mL), HeLa cells (324.2 ± 41.4 µg/mL) and M059 J cells (289.3 ± 10.9 µg/mL). Therefore, the cytotoxicity of PM-EO had little influence on the antibacterial effect, since it showed antibacterial activity at lower concentrations. Our results suggest that PM-EO is a promising source of new antibacterial and antitumour agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Oils, Volatile/chemistry , Psidium/chemistry , Cell Line, Tumor , Gas Chromatography-Mass Spectrometry , Humans , Microbial Sensitivity Tests , Monocyclic Sesquiterpenes , Myrtaceae/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/analysis
2.
An Acad Bras Cienc ; 90(2): 1285-1292, 2018.
Article in English | MEDLINE | ID: mdl-29898096

ABSTRACT

Tooth decay is a major public health problem which affects a large number of people in several countries. Even though more than 700 bacterial species have been detected in the oral cavity, Streptococcus and Lactobacillus stand out as the genera that cause tooth decay and other periodontal diseases. In this study, essential oils from Citrus aurantifolia leaves (CL-EO) and fruit peel (CP-EO) were obtained by hydrodistillation by a Clevenger-type apparatus whereas their chemical composition was analyzed by gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Limonene (77.5 %), linalool (20.1 %), citronellal (14.5 %) and citronellol (14.2 %) were the main constituents found in the essential oils from C. aurantifolia leaves and fruit peel. Antibacterial activity of essential oils was evaluated in terms of its minimum inhibitory concentration (MIC) values by the broth microdilution method in 96-well microplates. Both CL-EO and CP-EO displayed some activity against all oral pathogens under investigation; MIC values ranged from 20 to 200 µg/mL. CL-EO and CP-EO not only had promising activity against Streptococcus mutans (MIC = 20 µg/mL) and Lactobacillus casei (31.25 µg/mL), but also displayed antibacterial activity against all studied cariogenic bacteria. Efficacy of essential oils against S. mutans and L. casei is noteworthy and should be further investigated.


Subject(s)
Anti-Bacterial Agents , Citrus/chemistry , Dental Caries/drug therapy , Oils, Volatile , Plant Extracts , Plant Leaves/chemistry , Streptococcus/drug effects , Acyclic Monoterpenes , Aldehydes/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Cyclohexenes/chemistry , Gas Chromatography-Mass Spectrometry , Lacticaseibacillus casei/drug effects , Limonene , Microbial Sensitivity Tests , Monoterpenes/chemistry , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Terpenes/chemistry
3.
An. acad. bras. ciênc ; 89(4): 3005-3013, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-886853

ABSTRACT

ABSTRACT Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC50= 28.55 μg.mL-1) and L. amazonensis promastigotes (IC50 = 2.28 μg.mL-1). Eighteen chemical constituents were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS) in the essential oil, whose major constituents were spathulenol (17.6 %), caryophyllene oxide (16.4 %), β-caryophyllene (14.0 %) and myrcene (8.4 %). In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK2 adherent epithelial cell at the concentration range under analysis (CC50 = 150.9 μg.mL-1). It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Leishmania braziliensis/drug effects , Oils, Volatile/pharmacology , Burseraceae/chemistry , Trypanocidal Agents/isolation & purification , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Gas Chromatography-Mass Spectrometry
4.
An Acad Bras Cienc ; 89(4): 3005-3013, 2017.
Article in English | MEDLINE | ID: mdl-29044326

ABSTRACT

Leishmaniasis and trypanosomiasis are globally widespread parasitic diseases which have been responsible for high mortality rates. Since drugs available for their treatment are highly hepatotoxic, nephrotoxic and cardiotoxic, adherence to therapy has been affected. Thus, the search for new, more effective and safer drugs for the treatment of these diseases is necessary. Natural products have stood out as an alternative to searching for new bioactive molecules with therapeutic potential. In this study, the chemical composition and antiparasitic activity of the essential oil from Protium ovatum leaves against trypomastigote forms of Trypanosoma cruzi and the promastigote forms of Leishmania amazonensis were evaluated. The essential oil was promising against trypomastigote forms of T. cruzi (IC50= 28.55 µg.mL-1) and L. amazonensis promastigotes (IC50 = 2.28 µg.mL-1). Eighteen chemical constituents were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS) in the essential oil, whose major constituents were spathulenol (17.6 %), caryophyllene oxide (16.4 %), ß-caryophyllene (14.0 %) and myrcene (8.4 %). In addition, the essential oil from P. ovatum leaves had moderate cytotoxicity against LLCMK2 adherent epithelial cell at the concentration range under analysis (CC50 = 150.9 µg.mL-1). It should be highlighted that this is the first report of the chemical composition and anti-Trypanosoma cruzi and anti-Leishmania amazonensis activities of the essential oil from Protium ovatum leaves.


Subject(s)
Burseraceae/chemistry , Leishmania braziliensis/drug effects , Oils, Volatile/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Gas Chromatography-Mass Spectrometry , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Trypanocidal Agents/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL