Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8500, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38605102

ABSTRACT

Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.


Subject(s)
Fetal Development , Fetal Growth Retardation , Muscle, Skeletal , Swine , Humans , Animals , Male , Female , Swine/genetics , Swine/physiology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Muscle, Skeletal/metabolism , Gene Expression Regulation, Developmental , Fetal Development/genetics , Transcriptome , Gestational Age , Real-Time Polymerase Chain Reaction , Immunohistochemistry , Fetus/metabolism , Genes, Developmental , MyoD Protein/genetics , MyoD Protein/metabolism , Actinin/genetics , Actinin/metabolism
2.
J Endocrinol ; 258(3)2023 09 01.
Article in English | MEDLINE | ID: mdl-37343234

ABSTRACT

11ß-Hydroxysteroid dehydrogenase 1 (11ßHSD1) is a drug target to attenuate adverse effects of chronic glucocorticoid excess. It catalyses intracellular regeneration of active glucocorticoids in tissues including brain, liver and adipose tissue (coupled to hexose-6-phosphate dehydrogenase, H6PDH). 11ßHSD1 activity in individual tissues is thought to contribute significantly to glucocorticoid levels at those sites, but its local contribution vs glucocorticoid delivery via the circulation is unknown. Here, we hypothesised that hepatic 11ßHSD1 would contribute significantly to the circulating pool. This was studied in mice with Cre-mediated disruption of Hsd11b1 in liver (Alac-Cre) vs adipose tissue (aP2-Cre) or whole-body disruption of H6pdh. Regeneration of [9,12,12-2H3]-cortisol (d3F) from [9,12,12-2H3]-cortisone (d3E), measuring 11ßHSD1 reductase activity was assessed at steady state following infusion of [9,11,12,12-2H4]-cortisol (d4F) in male mice. Concentrations of steroids in plasma and amounts in liver, adipose tissue and brain were measured using mass spectrometry interfaced with matrix-assisted laser desorption ionisation or liquid chromatography. Amounts of d3F were higher in liver, compared with brain and adipose tissue. Rates of appearance of d3F were ~6-fold slower in H6pdh-/- mice, showing the importance for whole-body 11ßHSD1 reductase activity. Disruption of liver 11ßHSD1 reduced the amounts of d3F in liver (by ~36%), without changes elsewhere. In contrast disruption of 11ßHSD1 in adipose tissue reduced rates of appearance of circulating d3F (by ~67%) and also reduced regenerated of d3F in liver and brain (both by ~30%). Thus, the contribution of hepatic 11ßHSD1 to circulating glucocorticoid levels and amounts in other tissues is less than that of adipose tissue.


Subject(s)
Cortisone , Glucocorticoids , Male , Mice , Animals , Hydrocortisone , Adipose Tissue , Steroids , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics
3.
Theriogenology ; 145: 226-230, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31748175

ABSTRACT

In a previous study, a subset of miRNAs were identified the expression of which increases substantially during the follicle-luteal transition in cattle. Here, we investigated the functional involvement of some of these miRNAs (miR-96, miR-182, miR-132, miR-21, miR-378) by determining whether there is an association in vivo between their expression in the corpus luteum (CL), CL size and progesterone production. The two largest and two smallest CL were collected from 12 donor beef heifers on Day 7 following ovarian super-stimulation (Day 0 = 28-32 h after first standing to be mounted). Additionally, the CL and a plasma sample were collected from 29 recipient heifers on Day 15. Luteal expression of miRNAs and mRNAs, and plasma progesterone concentrations were quantified by RT-qPCR and RIA, respectively. There were no differences in the mean expression of any miRNAs examined or the steroidogenic enzymes, STAR or CYP11A1, between the largest and smallest CL in donor heifers (P > 0.1). In addition, there were no significant correlations of luteal volume or weight with any miRNA, CYP11A1 or STAR in donor heifers. However, a correlation (r ≥ 0.5, P ≤ 0.001) existed between the transcript levels of CYP11A1 and STAR in the CL, as well as between each of those and miR-182 levels. In addition, CYP11A1 abundance was moderately correlated (r ≤ 0.4, P < 0.05) with each of miR-96 and miR-378. In recipient heifers, progesterone levels were moderately correlated with luteal weight (r = 0.41, P = 0.03) but not with the expression of any miRNA, CYP11A1 or STAR (P > 0.1). Moreover, luteal CYP11A1 and STAR were correlated (r = 0.6, P ≤ 0.001) with miR-182 as well as with each other, consistent with data in donor heifers. Finally, both CYP11A1 and STAR were moderately correlated (r ≤ 0.5) with miR-132 and, in the case of STAR, with miR-378. In summary, there was no association between either luteal weight/volume or plasma progesterone concentrations and any of the miRNAs analysed in donor and recipient heifers. However, CYP11A1 and STAR transcript levels were significantly correlated with several miRNAs, most notably miR-182, as well as with each other, in luteal tissues from both donor and recipient heifers. This finding confirms results of previous in vitro studies and, importantly, provides the first in vivo evidence of a role of the miR-183-96-182 cluster in regulating luteal steroidogenesis.


Subject(s)
Cattle , Corpus Luteum/anatomy & histology , Corpus Luteum/physiology , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Steroids/biosynthesis , Animals , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Female , MicroRNAs/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Cytometry A ; 93(1): 50-59, 2018 01.
Article in English | MEDLINE | ID: mdl-28941046

ABSTRACT

The discovery that pericytes are in vivo counterparts of Mesenchymal Stem/Stromal Cells (MSCs) has placed these perivascular cells in the research spotlight, bringing up hope for a well-characterized cell source for clinical applications, alternative to poorly defined, heterogeneous MSCs preparations currently in use. Native pericytes express typical MSC markers and, after isolation by fluorescence-activated cell sorting, display an MSC phenotype in culture. These features have been demonstrated in different species, including humans and horses, the main targets of regenerative treatments. Significant clinical potential of pericytes has been shown by transplantation of human cells into rodent models of tissue injury, and it is hoped that future studies will demonstrate clinical potential in veterinary species. Here, we provide an overview of the current knowledge on pericytes across different species including humans, companion and large animal models, in relation to their identification in different body tissues, methodology for prospective isolation, characterization, and potential for tissue regeneration. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Pericytes/cytology , Pericytes/physiology , Regenerative Medicine/methods , Animals , Antigens, CD/metabolism , Cell Separation/methods , Dogs , Horses , Humans , Pericytes/transplantation , Regenerative Medicine/trends , Sheep , Species Specificity , Swine
5.
Reproduction ; 146(3): 273-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23813447

ABSTRACT

Previous evidence from in vitro studies suggests specific roles for a subset of miRNAs, including miR-21, miR-23a, miR-145, miR-503, miR-224, miR-383, miR-378, miR-132, and miR-212, in regulating ovarian follicle development. The objective of this study was to determine changes in the levels of these miRNAs in relation to follicle selection, maturation, and ovulation in the monovular equine ovary. In Experiment 1, follicular fluid was aspirated during ovulatory cycles from the dominant (DO) and largest subordinate (S) follicles of an ovulatory wave and the dominant (DA) follicle of a mid-cycle anovulatory wave (n=6 mares). Follicular fluid levels of progesterone and estradiol were lower (P<0.01) in S follicles than in DO follicles, whereas mean levels of IGF1 were lower (P<0.01) in S and DA follicles than in DO follicles. Relative to DO and DA follicles, S follicles had higher (P≤0.01) follicular fluid levels of miR-145 and miR-378. In Experiment 2, follicular fluid and granulosa cells were aspirated from dominant follicles before (DO) and 24 h after (L) administration of an ovulatory dose of hCG (n=5 mares/group). Relative to DO follicles, L follicles had higher follicular fluid levels of progesterone (P=0.05) and lower granulosa cell levels of CYP19A1 and LHCGR (P<0.005). Levels of miR-21, miR-132, miR-212, and miR-224 were increased (P<0.05) in L follicles; this was associated with reduced expression of the putative miRNA targets, PTEN, RASA1, and SMAD4. These novel results may indicate a physiological involvement of miR-21, miR-145, miR-224, miR-378, miR-132, and miR-212 in the regulation of cell survival, steroidogenesis, and differentiation during follicle selection and ovulation in the monovular ovary.


Subject(s)
Horses/physiology , MicroRNAs/physiology , Ovarian Follicle/metabolism , Animals , Chorionic Gonadotropin/physiology , Dinoprostone/metabolism , Female , Follicular Fluid/physiology , Insulin-Like Growth Factor I/physiology , Random Allocation , Steroids/physiology
6.
J Dairy Sci ; 86(8): 2558-67, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12939079

ABSTRACT

The effect of three milk pH values, 6.0, 6.3 and 6.7, on gelation properties was monitored by small amplitude oscillatory rheology as well as a large deformation (yield) test for gels induced by the plant coagulants, Cynara cardunculus L. and Cynara humilis L., and chymosin. Gel microstructure was studied using confocal scanning laser microscopy. For each coagulant, a decrease in pH of milk resulted in a decrease in gelation time (tg), and an increase in the rate of increase in storage modulus (G'). At pH 6.0 and 6.3, plant coagulant-induced gels reached a maximum value in G' (G'max) followed by a decrease in G' values during the rest of the experiment, reflecting higher proteolytic activity of plant coagulants towards caseins as determined by SDS-PAGE. Gels produced at pH 6.0 and 6.3, exhibited a minimum in loss tangent (tan delta) followed by slight increase in tan delta during gel aging, that may have been associated with faster rearrangements of the gel network structure. In gels aged for approximately 6 h, the values for G', tan delta at low frequency (0.006 Hz) and yield stress were higher for chymosin than for plant-induced gels. For gels with the same pH value, no major differences were observed in microstructure between coagulants. Gels made at low pH values (6.3 and 6.0) appeared to have a denser or more interconnected structure than gels made at pH 6.7. Our results suggest that, at a low pH, the type of coagulant used in gelation is likely to have a considerably impact on gel/cheese structure.


Subject(s)
Chymosin/pharmacology , Coagulants/pharmacology , Cynara/chemistry , Milk/chemistry , Animals , Electrophoresis, Polyacrylamide Gel , Gels , Hydrogen-Ion Concentration , Kinetics , Plant Extracts/pharmacology , Rheology/drug effects
7.
Eur J Biochem ; 243(3): 695-700, 1997 Feb 01.
Article in English | MEDLINE | ID: mdl-9057834

ABSTRACT

Plant aspartic proteinases characterised at the molecular level contain one or more consensus N-glycosylation sites [Runeberg-Roos, P., Tormäkangas, K. & Ostman, A. (1991) Eur. J. Biochem. 202, 1021-1027; Asakura, T., Watanabe, H., Abe, K. & Arai, S. (1995) Eur. J. Biochem, 232, 77-83; Veríssimo, P., Faro, C., Moir, A. J. G., Lin, Y., Tang, J. & Pires, E. (1996) Eur. J. Biochem. 235, 762-768]. We found that the glycosylation sites are occupied for the barley (Hordeum vulgare L.) aspartic proteinase (Asn333) and the cardoon (Cynara cardunculus L.) aspartic proteinase, cardosin A (Asn70 and Asn363). The oligosaccharides from each site were released from peptide pools by enzymatic hydrolysis with peptide-N-glycanase A or by hydrazinolysis and their structures were determined by exoglycosidase sequencing combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry. It was observed that 6% of the oligosaccharides from the first glycosylation site of cardosin A are of the oligomannose type. Modified type glycans with proximal Fuc and without Xyl account for about 82%, 14% and 3% of the total oligosaccharides from the first and the second glycosylation sites of cardosin A and from H. vulgare aspartic proteinase, respectively. Oligosaccharides with Xyl but without proximal Fuc were only detected in the latter proteinase (4%). Glycans with proximal Fuc and Xyl account for 6%, 86% and 92% of total oligosaccharides from the first and second glycosylation sites of cardosin A and from H. vulgare aspartic proteinase, respectively.


Subject(s)
Aspartic Acid Endopeptidases/metabolism , Hordeum/enzymology , Plant Proteins/metabolism , Aspartic Acid Endopeptidases/chemistry , Carbohydrate Sequence , Glycosylation , Hordeum/chemistry , Hordeum/metabolism , Molecular Sequence Data , Oligosaccharides/chemistry , Oligosaccharides/isolation & purification , Oligosaccharides/metabolism , Plant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...