Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 174: 116552, 2024 May.
Article in English | MEDLINE | ID: mdl-38599061

ABSTRACT

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Subject(s)
Connexin 43 , Myocytes, Smooth Muscle , Nerve Growth Factor , Pulmonary Artery , Animals , Humans , Male , Rats , Cells, Cultured , Connexin 43/metabolism , Gap Junctions/metabolism , Gap Junctions/drug effects , Hypertension, Pulmonary/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Nerve Growth Factor/metabolism , Phosphorylation , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Rats, Wistar , Receptor, trkA/metabolism
3.
Elife ; 122023 07 26.
Article in English | MEDLINE | ID: mdl-37494277

ABSTRACT

Bronchi of chronic obstructive pulmonary disease (COPD) are the site of extensive cell infiltration, allowing persistent contact between resident cells and immune cells. Tissue fibrocytes interaction with CD8+ T cells and its consequences were investigated using a combination of in situ, in vitro experiments and mathematical modeling. We show that fibrocytes and CD8+ T cells are found in the vicinity of distal airways and that potential interactions are more frequent in tissues from COPD patients compared to those of control subjects. Increased proximity and clusterization between CD8+ T cells and fibrocytes are associated with altered lung function. Tissular CD8+ T cells from COPD patients promote fibrocyte chemotaxis via the CXCL8-CXCR1/2 axis. Live imaging shows that CD8+ T cells establish short-term interactions with fibrocytes, that trigger CD8+ T cell proliferation in a CD54- and CD86-dependent manner, pro-inflammatory cytokines production, CD8+ T cell cytotoxic activity against bronchial epithelial cells and fibrocyte immunomodulatory properties. We defined a computational model describing these intercellular interactions and calibrated the parameters based on our experimental measurements. We show the model's ability to reproduce histological ex vivo characteristics, and observe an important contribution of fibrocyte-mediated CD8+ T cell proliferation in COPD development. Using the model to test therapeutic scenarios, we predict a recovery time of several years, and the failure of targeting chemotaxis or interacting processes. Altogether, our study reveals that local interactions between fibrocytes and CD8+ T cells could jeopardize the balance between protective immunity and chronic inflammation in the bronchi of COPD patients.


Subject(s)
CD8-Positive T-Lymphocytes , Pulmonary Disease, Chronic Obstructive , Humans , Bronchi/pathology , Epithelial Cells/pathology , Inflammation/pathology
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047427

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a worldwide prevalent respiratory disease mainly caused by tobacco smoke exposure. COPD is now considered as a systemic disease with several comorbidities. Among them, skeletal muscle dysfunction affects around 20% of COPD patients and is associated with higher morbidity and mortality. Although the histological alterations are well characterized, including myofiber atrophy, a decreased proportion of slow-twitch myofibers, and a decreased capillarization and oxidative phosphorylation capacity, the molecular basis for muscle atrophy is complex and remains partly unknown. Major difficulties lie in patient heterogeneity, accessing patients' samples, and complex multifactorial process including extrinsic mechanisms, such as tobacco smoke or disuse, and intrinsic mechanisms, such as oxidative stress, hypoxia, or systemic inflammation. Muscle wasting is also a highly dynamic process whose investigation is hampered by the differential protein regulation according to the stage of atrophy. In this review, we report and discuss recent data regarding the molecular alterations in COPD leading to impaired muscle mass, including inflammation, hypoxia and hypercapnia, mitochondrial dysfunction, diverse metabolic changes such as oxidative and nitrosative stress and genetic and epigenetic modifications, all leading to an impaired anabolic/catabolic balance in the myocyte. We recapitulate data concerning skeletal muscle dysfunction obtained in the different rodent models of COPD. Finally, we propose several pathways that should be investigated in COPD skeletal muscle dysfunction in the future.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tobacco Smoke Pollution , Humans , Muscular Atrophy/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Muscle, Skeletal/metabolism , Inflammation/metabolism , Hypoxia/metabolism
5.
J Cachexia Sarcopenia Muscle ; 14(2): 745-757, 2023 04.
Article in English | MEDLINE | ID: mdl-36811134

ABSTRACT

Skeletal muscle wasting, whether related to physiological ageing, muscle disuse or to an underlying chronic disease, is a key determinant to quality of life and mortality. However, cellular basis responsible for increased catabolism in myocytes often remains unclear. Although myocytes represent the vast majority of skeletal muscle cellular population, they are surrounded by numerous cells with various functions. Animal models, mostly rodents, can help to decipher the mechanisms behind this highly dynamic process, by allowing access to every muscle as well as time-course studies. Satellite cells (SCs) play a crucial role in muscle regeneration, within a niche also composed of fibroblasts and vascular and immune cells. Their proliferation and differentiation is altered in several models of muscle wasting such as cancer, chronic kidney disease or chronic obstructive pulmonary disease (COPD). Fibro-adipogenic progenitor cells are also responsible for functional muscle growth and repair and are associated in disease to muscle fibrosis such as in chronic kidney disease. Other cells have recently proven to have direct myogenic potential, such as pericytes. Outside their role in angiogenesis, endothelial cells and pericytes also participate to healthy muscle homoeostasis by promoting SC pool maintenance (so-called myogenesis-angiogenesis coupling). Their role in chronic diseases muscle wasting has been less studied. Immune cells are pivotal for muscle repair after injury: Macrophages undergo a transition from the M1 to the M2 state along with the transition between the inflammatory and resolutive phase of muscle repair. T regulatory lymphocytes promote and regulate this transition and are also able to activate SC proliferation and differentiation. Neural cells such as terminal Schwann cells, motor neurons and kranocytes are notably implicated in age-related sarcopenia. Last, newly identified cells in skeletal muscle, such as telocytes or interstitial tenocytes could play a role in tissular homoeostasis. We also put a special focus on cellular alterations occurring in COPD, a chronic and highly prevalent respiratory disease mainly linked to tobacco smoke exposure, where muscle wasting is strongly associated with increased mortality, and discuss the pros and cons of animal models versus human studies in this context. Finally, we discuss resident cells metabolism and present future promising leads for research, including the use of muscle organoids.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Regeneration , Animals , Humans , Regeneration/physiology , Endothelial Cells , Quality of Life , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Cachexia/pathology , Models, Animal , Pulmonary Disease, Chronic Obstructive/pathology
6.
Am J Respir Crit Care Med ; 207(4): 416-426, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36108144

ABSTRACT

Rationale: Children with preschool wheezing represent a very heterogeneous population with wide variability regarding their clinical, inflammatory, obstructive, and/or remodeling patterns. We hypothesized that assessing bronchial remodeling would help clinicians to better characterize severe preschool wheezers. Objectives: The main objective was to identify bronchial remodeling-based latent classes of severe preschool wheezers. Secondary objectives were to compare cross-sectional and longitudinal clinical and biological data between classes and to assess the safety of bronchoscopy. Methods: This double-center prospective study (NCT02806466) included severe preschool wheezers (1-5 yr old) requiring fiberoptic bronchoscopy. Bronchial remodeling parameters (i.e., epithelial integrity, reticular basement membrane [RBM] thickness, mucus gland, fibrosis and bronchial smooth muscle [BSM] areas, the density of blood vessels, and RBM-BSM distance) were assessed and evaluated by latent class analysis. An independent cohort of severe preschool wheezers (NCT04558671) was used to validate our results. Measurements and Main Results: Fiberoptic bronchoscopy procedures were well tolerated. A two-class model was identified: Class BR1 was characterized by increased RBM thickness, normalized BSM area, the density of blood vessels, decreased mucus gland area, fibrosis, and RBM-BSM distance compared with Class BR2. No significant differences were found between classes in the year before fiberoptic bronchoscopy. By contrast, Class BR1 was associated with a shorter time to first exacerbation and an increased risk of both frequent (3 or more) and severe exacerbations during the year after bronchoscopy in the two cohorts. Conclusions: Assessing bronchial remodeling identified severe preschool wheezers at risk of frequent and severe subsequent exacerbations with a favorable benefit to risk ratio.


Subject(s)
Asthma , Child , Child, Preschool , Humans , Cross-Sectional Studies , Latent Class Analysis , Prospective Studies , Bronchi
7.
Front Pharmacol ; 13: 939780, 2022.
Article in English | MEDLINE | ID: mdl-36147316

ABSTRACT

Fibrocytes are monocyte-derived cells able to differentiate into myofibroblasts-like cells. We have previously shown that they are increased in the bronchi of Chronic Obstructive Pulmonary Disease (COPD) patients and associated to worse lung function. COPD is characterized by irreversible airflow obstruction, partly due to an increased cholinergic environment. Our goal was to investigate muscarinic signalling in COPD fibrocytes. Fibrocytes were isolated from 16 patients with COPD's blood and presence of muscarinic M3 receptor was assessed at the transcriptional and protein levels. Calcium signalling and collagen gels contraction experiments were performed in presence of carbachol (cholinergic agonist) ± tiotropium bromide (antimuscarinic). Expression of M3 receptor was confirmed by Western blot and flow cytometry in differentiated fibrocytes. Immunocytochemistry showed the presence of cytoplasmic and membrane-associated pools of M3. Stimulation with carbachol elicited an intracellular calcium response in 35.7% of fibrocytes. This response was significantly blunted by the presence of tiotropium bromide: 14.6% of responding cells (p < 0.0001). Carbachol induced a significant contraction of fibrocytes embedded in collagen gels (13.6 ± 0.3% versus 2.5 ± 4.1%; p < 0.0001), which was prevented by prior tiotropium bromide addition (4.1 ± 2.7% of gel contraction; p < 0.0001). Finally, M3-expressing fibrocytes were also identified in situ in the peri-bronchial area of COPD patients' lungs, and there was a tendency to an increased density compared to healthy patient's lungs. In conclusion, around 1/3 of COPD patients' fibrocytes express a functional muscarinic M3 receptor. Cholinergic-induced fibrocyte contraction might participate in airway diameter reduction and subsequent increase of airflow resistance in patients with COPD. The inhibition of these processes could participate to the beneficial effects of muscarinic antagonists for COPD treatment.

8.
Proc Natl Acad Sci U S A ; 119(28): e2202370119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35749382

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections initiate in the bronchi of the upper respiratory tract and are able to disseminate to the lower respiratory tract, where infections can cause an acute respiratory distress syndrome with a high degree of mortality in elderly patients. We used reconstituted primary bronchial epithelia from adult and child donors to follow the SARS-CoV-2 infection dynamics. We show that, in epithelia from adult donors, infections initiate in multiciliated cells and spread within 24 to 48 h throughout the whole epithelia. Syncytia formed of ciliated and basal cells appeared at the apical side of the epithelia within 3 to 4 d and were released into the apical lumen, where they contributed to the transmittable virus dose. A small number of reconstituted epithelia were intrinsically more resistant to virus infection, limiting virus spread to different degrees. This phenotype was more frequent in epithelia derived from children versus adults and correlated with an accelerated release of type III interferon. Treatment of permissive adult epithelia with exogenous type III interferon restricted infection, while type III interferon gene knockout promoted infection. Furthermore, a transcript analysis revealed that the inflammatory response was specifically attenuated in children. Taken together, our findings suggest that apical syncytia formation is an underappreciated source of virus propagation for tissue or environmental dissemination, whereas a robust type III interferon response such as commonly seen in young donors restricted SARS-CoV-2 infection. Thus, the combination of interferon restriction and attenuated inflammatory response in children might explain the epidemiological observation of age-related susceptibility to COVID-19.


Subject(s)
Bronchi , COVID-19 , Giant Cells , Interferons , Respiratory Mucosa , SARS-CoV-2 , Aged , Bronchi/immunology , Bronchi/virology , COVID-19/immunology , COVID-19/virology , Child , Disease Susceptibility , Giant Cells/immunology , Giant Cells/virology , Humans , Interferons/immunology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/immunology , Interferon Lambda
9.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35230976

ABSTRACT

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model, and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of CS mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in CS mice, and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis and bioenergetics in the pathophysiology of RASopathies and suggest that patients with CS may benefit from treatment with mitochondrial modulators.


Subject(s)
Costello Syndrome , Germ-Line Mutation , Proto-Oncogene Proteins p21(ras) , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Costello Syndrome/genetics , Costello Syndrome/metabolism , Homeostasis , Humans , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Zebrafish/genetics , Zebrafish/metabolism
10.
Cell Rep ; 38(13): 110571, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354045

ABSTRACT

Rhinovirus (RV) infection of the bronchial epithelium is implicated in the vast majority of severe asthma exacerbations. Interestingly, the susceptibility of bronchial epithelium to RV infection is increased in persons with asthma. Bronchial smooth muscle (BSM) remodeling is an important feature of severe asthma pathophysiology, and its reduction using bronchial thermoplasty has been associated with a significant decrease in the exacerbation rate. We hypothesized that asthmatic BSM can play a role in RV infection of the bronchial epithelium. Using an original co-culture model between bronchial epithelium and BSM cells, we show that asthmatic BSM cells increase RV replication in bronchial epithelium following RV infection. These findings are related to the increased production of CCL20 by asthmatic BSM cells. Moreover, we demonstrate an original downregulation of the activity of the epithelial protein kinase RNA-activated (PKR) antiviral pathway. Finally, we identify a direct bottom-up effect of asthmatic BSM cells on bronchial epithelium susceptibility to RV infection.


Subject(s)
Asthma , Rhinovirus , Asthma/metabolism , Bronchi , Epithelium/metabolism , Humans , Muscle, Smooth/metabolism
11.
J Allergy Clin Immunol ; 150(1): 104-113, 2022 07.
Article in English | MEDLINE | ID: mdl-35143808

ABSTRACT

BACKGROUND: Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE: We hypothesized that RV infection of BE specifically increases BSM-cell migration from patients with asthma. METHODS: Serum samples, biopsies, or BSM cells were obtained from 86 patients with severe asthma and 31 subjects without asthma. BE cells from subjects without asthma were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting, and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS: BSM cells from patients with severe asthma specifically migrated toward RV-infected BE, whereas those from subjects without asthma did not. This specific migration is driven by BE C-X-C motif chemokine ligand 10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in BSM cells from those with severe asthma. CONCLUSIONS: We have demonstrated a novel mechanism of BSM remodeling in patients with severe asthma following RV exacerbation. This study highlights the C-X-C motif chemokine ligand 10/CXCR3-A axis as a potential therapeutic target in severe asthma.


Subject(s)
Asthma , Enterovirus Infections , Asthma/drug therapy , Cell Movement , Enterovirus Infections/metabolism , Epithelium/pathology , Humans , Ligands , Myocytes, Smooth Muscle/metabolism , Rhinovirus
12.
J Allergy Clin Immunol ; 148(2): 645-651.e11, 2021 08.
Article in English | MEDLINE | ID: mdl-33819511

ABSTRACT

BACKGROUND: Bronchial remodeling is a key feature of asthma that is already present in preschoolers with wheezing. Moreover, bronchial smooth muscle (BSM) remodeling at preschool age is predictive of asthma at school age. However, the mechanism responsible for BSM remodeling in preschoolers with wheezing remains totally unknown. In contrast, in adult asthma, BSM remodeling has been associated with an increase in BSM cell proliferation related to increased mitochondrial mass and biogenesis triggered by an altered calcium homeostasis. Indeed, BSM cell proliferation was decreased in vitro by the calcium channel blocker gallopamil. OBJECTIVE: Our aim was to investigate the mechanisms involved in BSM cell proliferation in preschoolers with severe wheezing, with special attention to the role of mitochondria and calcium signaling. METHODS: Bronchial tissue samples obtained from 12 preschool controls without wheezing and 10 preschoolers with severe wheezing were used to measure BSM mass and establish primary BSM cell cultures. BSM cell proliferation was assessed by manual counting and flow cytometry, ATP content was assessed by bioluminescence, mitochondrial respiration was assessed by using either the Seahorse or Oroboros technique, mitochondrial mass and biogenesis were assessed by immunoblotting, and calcium response to carbachol was assessed by confocal microscopy. The effect of gallopamil was also evaluated. RESULTS: BSM mass, cell proliferation, ATP content, mitochondrial respiration, mass and biogenesis, and calcium response were all increased in preschoolers with severe wheezing compared with in the controls. Gallopamil significantly decreased BSM mitochondrial biogenesis and mass, as well as cell proliferation. CONCLUSION: Mitochondria are key players in BSM cell proliferation in preschoolers with severe wheezing and could represent a potential target to treat BSM remodeling at an early stage of the disease.


Subject(s)
Airway Remodeling/immunology , Bronchi/immunology , Mitochondria, Muscle/immunology , Muscle, Smooth/immunology , Respiratory Sounds/immunology , Asthma/etiology , Asthma/immunology , Asthma/pathology , Bronchi/pathology , Calcium Signaling/drug effects , Calcium Signaling/immunology , Cells, Cultured , Child, Preschool , Female , Gallopamil/pharmacology , Humans , Infant , Male , Mitochondria, Muscle/pathology , Muscle, Smooth/pathology
13.
Eur Respir J ; 58(5)2021 11.
Article in English | MEDLINE | ID: mdl-33833033

ABSTRACT

BACKGROUND: Bronchial smooth muscle (BSM) remodelling in asthma is related to an increased mitochondrial biogenesis and enhanced BSM cell proliferation in asthma. Since mitochondria produce the highest levels of cellular energy and fatty acid ß-oxidation is the most powerful way to produce ATP, we hypothesised that, in asthmatic BSM cells, energetic metabolism is shifted towards the ß-oxidation of fatty acids. OBJECTIVES: We aimed to characterise BSM cell metabolism in asthma both in vitro and ex vivo to identify a novel target for reducing BSM cell proliferation. METHODS: 21 asthmatic and 31 non-asthmatic patients were enrolled. We used metabolomic and proteomic approaches to study BSM cells. Oxidative stress, ATP synthesis, fatty acid endocytosis, metabolite production, metabolic capabilities, mitochondrial networks, cell proliferation and apoptosis were assessed on BSM cells. Fatty acid content was assessed in vivo using matrix-assisted laser desorption/ionisation spectrometry imaging. RESULTS: Asthmatic BSM cells were characterised by an increased rate of mitochondrial respiration with a stimulated ATP production and mitochondrial ß-oxidation. Fatty acid consumption was increased in asthmatic BSM both in vitro and ex vivo. Proteome remodelling of asthmatic BSM occurred via two canonical mitochondrial pathways. The levels of carnitine palmitoyl transferase (CPT)2 and low-density lipoprotein (LDL) receptor, which internalise fatty acids through mitochondrial and cell membranes, respectively, were both increased in asthmatic BSM cells. Blocking CPT2 or LDL receptor drastically and specifically reduced asthmatic BSM cell proliferation. CONCLUSION: This study demonstrates a metabolic switch towards mitochondrial ß-oxidation in asthmatic BSM and identifies fatty acid metabolism as a new key target to reduce BSM remodelling in asthma.


Subject(s)
Asthma , Proteomics , Asthma/metabolism , Bronchi , Fatty Acids/metabolism , Humans , Muscle, Smooth , Oxidation-Reduction
14.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33393495

ABSTRACT

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Subject(s)
Drug Delivery Systems , Lung Neoplasms/enzymology , Mitochondrial Trifunctional Protein, alpha Subunit , Neoplasm Proteins , Trimetazidine/pharmacology , Cell Line, Tumor , Electron Transport Complex I/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mitochondrial Trifunctional Protein, alpha Subunit/antagonists & inhibitors , Mitochondrial Trifunctional Protein, alpha Subunit/biosynthesis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/biosynthesis , Oxidation-Reduction
15.
Eur Respir Rev ; 29(157)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33060165

ABSTRACT

Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.


Subject(s)
Lung Diseases , Mitochondria , Aging , Humans , Lung
16.
Oncogene ; 39(3): 617-636, 2020 01.
Article in English | MEDLINE | ID: mdl-31527668

ABSTRACT

The basic understanding of the biological effects of eukaryotic translation initiation factors (EIFs) remains incomplete, notably for their roles independent of protein translation. Different EIFs exhibit nuclear localization and DNA-related functions have been proposed, but the understanding of EIFs novel functions beyond protein translation lacks of integrative analyses between the genomic and the proteomic levels. Here, the noncanonical function of EIF3F was studied in human lung adenocarcinoma by combining methods that revealed both the protein-protein and the protein-DNA interactions of this factor. We discovered that EIF3F promotes cell metastasis in vivo. The underpinning molecular mechanisms involved the regulation of a cluster of 34 metastasis-promoting genes including Snail2, as revealed by proteomics combined with immuno-affinity purification of EIF3F and ChIP-seq/Q-PCR analyses. The interaction between EIF3F and signal transducer and activator of transcription 3 (STAT3) controlled the EIF3F-mediated increase in Snail2 expression and cellular invasion, which were specifically abrogated using the STAT3 inhibitor Nifuroxazide or knockdown approaches. Furthermore, EIF3F overexpression reprogrammed energy metabolism through the activation of AMP-activated protein kinase and the stimulation of oxidative phosphorylation. Our findings demonstrate the role of EIF3F in the molecular control of cell migration, invasion, bioenergetics, and metastasis. The discovery of a role for EIF3F-STAT3 interaction in the genetic control of cell migration and metastasis in human lung adenocarcinoma could lead to the development of diagnosis and therapeutic strategies.


Subject(s)
Adenocarcinoma of Lung/genetics , Cell Nucleus/metabolism , Energy Metabolism/genetics , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , STAT3 Transcription Factor/metabolism , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Animals , Cell Movement/drug effects , Cell Movement/genetics , Cell Nucleus/genetics , Cell Nucleus/pathology , Datasets as Topic , Energy Metabolism/drug effects , Eukaryotic Initiation Factor-3/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Hydroxybenzoates/pharmacology , Lung/cytology , Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Mice , Mutation , Neoplasm Invasiveness/genetics , Nitrofurans/pharmacology , Oxidative Phosphorylation/drug effects , RNA, Small Interfering/metabolism , RNA-Seq , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , Snail Family Transcription Factors/genetics , Survival Analysis , Xenograft Model Antitumor Assays
17.
Cell Rep ; 28(9): 2306-2316.e5, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461648

ABSTRACT

Colorectal cancer (CRC) is associated with metabolic and redox perturbation. The mitochondrial transporter uncoupling protein 2 (UCP2) controls cell proliferation in vitro through the modulation of cellular metabolism, but the underlying mechanism in tumors in vivo remains unexplored. Using murine intestinal cancer models and CRC patient samples, we find higher UCP2 protein levels in tumors compared to their non-tumoral counterparts. We reveal the tumor-suppressive role of UCP2 as its deletion enhances colon and small intestinal tumorigenesis in AOM/DSS-treated and ApcMin/+ mice, respectively, and correlates with poor survival in the latter model. Mechanistically, UCP2 loss increases levels of oxidized glutathione and proteins in tumors. UCP2 deficiency alters glycolytic pathways while promoting phospholipid synthesis, thereby limiting the availability of NADPH for buffering oxidative stress. We show that UCP2 loss renders colon cells more prone to malignant transformation through metabolic reprogramming and perturbation of redox homeostasis and could favor worse outcomes in CRC.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/metabolism , Lipogenesis , NADP/metabolism , Oxidative Stress , Uncoupling Protein 2/metabolism , Aged , Aged, 80 and over , Animals , Carcinogenesis/metabolism , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Glycolysis , Humans , Intestine, Small/metabolism , Intestine, Small/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Uncoupling Protein 2/genetics
18.
Front Immunol ; 10: 2998, 2019.
Article in English | MEDLINE | ID: mdl-31969885

ABSTRACT

Asthma exacerbations, a major concern in therapeutic strategies, are most commonly triggered by viral respiratory infections, particularly with human rhinovirus (HRV). Infection of bronchial epithelial (BE) cells by HRV triggers inflammation, notably monocyte recruitment. The increase of bronchial smooth muscle (BSM) mass in asthma, a hallmark of bronchial remodeling, is associated with the annual rate of exacerbations. The aim of the present study was to assess whether or not BSM could increase monocyte migration induced by HRV-infected BE. We used an advanced in vitro model of co-culture of human BE cells in air-liquid interface with human BSM cells from control and asthmatic patients. Inflammation triggered by HRV infection (HRV-16, MOI 0.1, 1 h) was assessed at 24 h with transcriptomic analysis and multiplex ELISA. In vitro CD14+ monocyte migration was evaluated with modified Boyden chamber. Results showed that HRV-induced monocyte migration was substantially increased in the co-culture model with asthmatic BSM, compared with control BSM. Furthermore, the well-known monocyte migration chemokine, CCL2, was not involved in this increased migration. However, we demonstrated that CCL5 was further increased in the asthmatic BSM co-culture and that anti-CCL5 blocking antibody significantly decreased monocyte migration induced by HRV-infected BE. Taken together, our findings highlight a new role of BSM cells in HRV-induced inflammation and provide new insights in mucosal immunology which may open new opportunities for prevention and/or treatment of asthma exacerbation.


Subject(s)
Asthma/etiology , Asthma/metabolism , Chemokine CCL5/metabolism , Monocytes/immunology , Monocytes/metabolism , Muscle, Smooth/metabolism , Picornaviridae Infections/complications , Rhinovirus , Aged , Asthma/pathology , Case-Control Studies , Cell Movement , Cells, Cultured , Coculture Techniques , Female , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Picornaviridae Infections/metabolism , Picornaviridae Infections/virology , Rhinovirus/physiology
19.
Nat Commun ; 9(1): 2092, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844386

ABSTRACT

Aberrant histone methylation profile is reported to correlate with the development and progression of NAFLD during obesity. However, the identification of specific epigenetic modifiers involved in this process remains poorly understood. Here, we identify the histone demethylase Plant Homeodomain Finger 2 (Phf2) as a new transcriptional co-activator of the transcription factor Carbohydrate Responsive Element Binding Protein (ChREBP). By specifically erasing H3K9me2 methyl-marks on the promoter of ChREBP-regulated genes, Phf2 facilitates incorporation of metabolic precursors into mono-unsaturated fatty acids, leading to hepatosteatosis development in the absence of inflammation and insulin resistance. Moreover, the Phf2-mediated activation of the transcription factor NF-E2-related factor 2 (Nrf2) further reroutes glucose fluxes toward the pentose phosphate pathway and glutathione biosynthesis, protecting the liver from oxidative stress and fibrogenesis in response to diet-induced obesity. Overall, our findings establish a downstream epigenetic checkpoint, whereby Phf2, through facilitating H3K9me2 demethylation at specific gene promoters, protects liver from the pathogenesis progression of NAFLD.


Subject(s)
Demethylation , Histone Demethylases/metabolism , Histones/metabolism , Homeodomain Proteins/metabolism , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Nuclear Proteins/metabolism , Obesity/pathology , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cells, Cultured , Enzyme Activation , Glucose/metabolism , Glutathione/biosynthesis , Humans , Liver/pathology , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Pentose Phosphate Pathway/physiology , Promoter Regions, Genetic/genetics , Transcription Factors/genetics
20.
Mol Cell Oncol ; 2(1): e975024, 2015.
Article in English | MEDLINE | ID: mdl-27308391

ABSTRACT

Invalidation of uncoupling protein 2 (Ucp2) increases glucose utilization and proliferation in normal cells. We recently reported that cancer cells that overexpress UCP2 become less tumorigenic while switching their metabolism from glycolysis to oxidative phosphorylation. UCP2 appears to be a key regulator of cellular metabolism with a relevant function against tumorigenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...