Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38202499

ABSTRACT

Through plasmon resonance, silver and gold nanoparticles can selectively backscatter light within different regions of the visible electromagnetic spectrum. We engineered a plasmonic film technology that utilizes gold and silver nanoparticles to enhance light at the necessary wavelengths for microalgal photosynthetic activities. Nanoparticles were embedded in a polymeric matrix to fabricate millimeter-thin plasmonic films that can be used as light filters in microalgal photobioreactors. Experiments conducted with microalga Chlamydomonas reinhardtii proved that microalgal growth and photosynthetic pigment production can be increased by up to 50% and 78%, respectively, by using these plasmonic film light filters. This work provides a scalable strategy for the efficient production of specialty chemicals and biofuels from microalgae through irradiation control with plasmonic nanoparticles.

2.
Sci Rep ; 7: 40725, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102313

ABSTRACT

Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase.


Subject(s)
Energy Metabolism , Microalgae/growth & development , Microalgae/metabolism , Biomass , Culture Media , Rheology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...