Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 181(6): 840-878, 2024 03.
Article in English | MEDLINE | ID: mdl-37706346

ABSTRACT

Adipose tissue has recently been recognized as an important endocrine organ that plays a crucial role in energy metabolism and in the immune response in many metabolic tissues. With this regard, emerging evidence indicates that an important crosstalk exists between the adipose tissue and the brain. However, the contribution of adipose tissue to the development of age-related diseases, including Alzheimer's disease, remains poorly defined. New studies suggest that the adipose tissue modulates brain function through a range of endogenous biologically active factors known as adipokines, which can cross the blood-brain barrier to reach the target areas in the brain or to regulate the function of the blood-brain barrier. In this review, we discuss the effects of several adipokines on the physiology of the blood-brain barrier, their contribution to the development of Alzheimer's disease and their therapeutic potential. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Adipokines , Brain/metabolism , Adipose Tissue/physiology , Blood-Brain Barrier/metabolism
2.
Methods Appl Fluoresc ; 12(1)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37751748

ABSTRACT

Fluorescence microscopy can provide valuable information about cell interior dynamics. Particularly, mean squared displacement (MSD) analysis is widely used to characterize proteins and sub-cellular structures' mobility providing the laws of molecular diffusion. The MSD curve is traditionally extracted from individual trajectories recorded by single-particle tracking-based techniques. More recently, image correlation methods like iMSD have been shown capable of providing averaged dynamic information directly from images, without the need for isolation and localization of individual particles. iMSD is a powerful technique that has been successfully applied to many different biological problems, over a wide spatial and temporal scales. The aim of this work is to review and compare these two well-established methodologies and their performance in different situations, to give an insight on how to make the most out of their unique characteristics. We show the analysis of the same datasets by the two methods. Regardless of the experimental differences in the input data for MSD or iMSD analysis, our results show that the two approaches can address equivalent questions for free diffusing systems. We focused on studying a range of diffusion coefficients between D = 0.001µm2s-1and D = 0.1µm2s-1, where we verified that the equivalence is maintained even for the case of isolated particles. This opens new opportunities for studying intracellular dynamics using equipment commonly available in any biophysical laboratory.

3.
Acta Neuropathol Commun ; 11(1): 31, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36855152

ABSTRACT

Microglia are brain-resident myeloid cells and play a major role in the innate immune responses of the CNS and the pathogenesis of Alzheimer's disease (AD). However, the contribution of nonparenchymal or brain-infiltrated myeloid cells to disease progression remains to be demonstrated. Here, we show that monocyte-derived cells (MDC) invade brain parenchyma in advanced stages of AD continuum using transcriptional analysis and immunohistochemical characterization in post-mortem human hippocampus. Our findings demonstrated that a high proportion (60%) of demented Braak V-VI individuals was associated with up-regulation of genes rarely expressed by microglial cells and abundant in monocytes, among which stands the membrane-bound scavenger receptor for haptoglobin/hemoglobin complexes or Cd163. These Cd163-positive MDC invaded the hippocampal parenchyma, acquired a microglial-like morphology, and were located in close proximity to blood vessels. Moreover, and most interesting, these invading monocytes infiltrated the nearby amyloid plaques contributing to plaque-associated myeloid cell heterogeneity. However, in aged-matched control individuals with hippocampal amyloid pathology, no signs of MDC brain infiltration or plaque invasion were found. The previously reported microglial degeneration/dysfunction in AD hippocampus could be a key pathological factor inducing MDC recruitment. Our data suggest a clear association between MDC infiltration and endothelial activation which in turn may contribute to damage of the blood brain barrier integrity. The recruitment of monocytes could be a consequence rather than the cause of the severity of the disease. Whether monocyte infiltration is beneficial or detrimental to AD pathology remains to be fully elucidated. These findings open the opportunity to design targeted therapies, not only for microglia but also for the peripheral immune cell population to modulate amyloid pathology and provide a better understanding of the immunological mechanisms underlying the progression of AD.


Subject(s)
Alzheimer Disease , Monocytes , Humans , Aged , Plaque, Amyloid , Brain , Hippocampus , Amyloidogenic Proteins
4.
Methods Appl Fluoresc ; 10(4)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36067776

ABSTRACT

Eisosomes are nanoscale plasma membrane domains shaped as furrow-like invaginations. InSaccharomyces cerevisiaethese relatively immobile and uniform structures are mainly composed of two cytoplasmic proteins Pil1 and Lsp1. The present work uses fluctuation of fluorescence signals and analytical methods to determine Pil1 and Lsp1 dynamics at different subcellular locations. Using scanning techniques and autocorrelation analysis we determine that the cytoplasmic pools of Pil1 and Lsp1 behave mainly by passive diffusion. Single-point FCS experiments performed at several subcellular locations reveal that Pil1 mobility is faster in daughter cells. Furthermore, pair correlation function analysis indicates a rapid dynamic of Pil1 near the plasma membrane of growing yeast buds, where the membrane is expected to be actively assembling eisosomes.


Subject(s)
Saccharomyces cerevisiae Proteins , Cell Membrane/metabolism , Female , Humans , Mothers , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
6.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628216

ABSTRACT

Alzheimer's disease (AD) constitutes the most prominent form of dementia among elderly individuals worldwide. Disease modeling using murine transgenic mice was first initiated thanks to the discovery of heritable mutations in amyloid precursor protein (APP) and presenilins (PS) genes. However, due to the repeated failure of translational applications from animal models to human patients, along with the recent advances in genetic susceptibility and our current understanding on disease biology, these models have evolved over time in an attempt to better reproduce the complexity of this devastating disease and improve their applicability. In this review, we provide a comprehensive overview about the major pathological elements of human AD (plaques, tauopathy, synaptic damage, neuronal death, neuroinflammation and glial dysfunction), discussing the knowledge that available mouse models have provided about the mechanisms underlying human disease. Moreover, we highlight the pros and cons of current models, and the revolution offered by the concomitant use of transgenic mice and omics technologies that may lead to a more rapid improvement of the present modeling battery.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Plaque, Amyloid
7.
Neuroscientist ; 28(6): 572-593, 2022 12.
Article in English | MEDLINE | ID: mdl-33769131

ABSTRACT

Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Humans , Alzheimer Disease/pathology , tau Proteins , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides
8.
Methods Mol Biol ; 2409: 99-117, 2022.
Article in English | MEDLINE | ID: mdl-34709638

ABSTRACT

It has become increasingly evident that unveiling the mechanisms of virus entry, assembly, and virion release is fundamental for identifying means for preventing viral spread and controlling viral disease. Due to virus mobility and structural and/or functional heterogeneity among viral particles, high spatiotemporal resolution single-virus/single-particle techniques are required to capture the behavior of viral particles inside infected cells.In this chapter, we present fluorescence imaging analysis methods for studying the mobility of fluorescently labeled dengue virus (DENV) proteins in live infected cells. Some of the most recent Fluorescence Fluctuation Spectroscopy (FFS) methods will be presented and, in particular, the pair Correlation Functions (pCF) approach will be discussed. The pCF method does not require individual molecule isolation, as in a particle-tracking experiment, to capture single viral protein behavior. In this regard, image acquisition is followed by the spatiotemporal cross-correlation function at increasing time delays, yielding a quantitative view of single-particle mobility in intact live infected cells.We provide a general overview and a practical guidance for the implementation of advanced FFS techniques, and the pair Correlation Functions analysis, as quantitative tools to reveal insights into previously unreported DENV mechanisms. We expect this protocol report will serve as an incentive for further applying correlation imaging studies in virology research.


Subject(s)
Dengue Virus , Dengue , Capsid , Capsid Proteins , Humans , Virion , Virus Internalization
9.
Sci Rep ; 11(1): 24415, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34952906

ABSTRACT

Flaviviruses are major human disease-causing pathogens, including dengue virus (DENV), Zika virus, yellow fever virus and others. DENV infects hundreds of millions of people per year around the world, causing a tremendous social and economic burden. DENV capsid (C) protein plays an essential role during genome encapsidation and viral particle formation. It has been previously shown that DENV C enters the nucleus in infected cells. However, whether DENV C protein exhibits nuclear export remains unclear. By spatially cross-correlating different regions of the cell, we investigated DENV C movement across the nuclear envelope during the infection cycle. We observed that transport takes place in both directions and with similar translocation times (in the ms time scale) suggesting a bidirectional movement of both C protein import and export.Furthermore, from the pair cross-correlation functions in cytoplasmic or nuclear regions we found two populations of C molecules in each compartment with fast and slow mobilities. While in the cytoplasm the correlation times were in the 2-6 and 40-110 ms range for the fast and slow mobility populations respectively, in the cell nucleus they were 1-10 and 25-140 ms range, respectively. The fast mobility of DENV C in cytoplasmic and nuclear regions agreed with the diffusion coefficients from Brownian motion previously reported from correlation analysis. These studies provide the first evidence of DENV C shuttling from and to the nucleus in infected cells, opening new venues for antiviral interventions.


Subject(s)
Capsid Proteins/ultrastructure , Dengue Virus/ultrastructure , Dengue/virology , Active Transport, Cell Nucleus , Animals , Cell Line , Cricetinae
10.
Neurotherapeutics ; 18(4): 2468-2483, 2021 10.
Article in English | MEDLINE | ID: mdl-34738197

ABSTRACT

Alzheimer's disease (AD) is conceptualized as a synaptic failure disorder in which loss of glutamatergic synapses is a major driver of cognitive decline. Thus, novel therapeutic strategies aimed at regenerating synapses may represent a promising approach to mitigate cognitive deficits in AD patients. At present, no disease-modifying drugs exist for AD, and approved therapies are palliative at best, lacking in the ability to reverse the synaptic failure. Here, we tested the efficacy of a novel synaptogenic small molecule, SPG302 - a 3rd-generation benzothiazole derivative that increases the density of axospinous glutamatergic synapses - in 3xTg-AD mice. Daily dosing of 3xTg-AD mice with SPG302 at 3 and 30 mg/kg (i.p.) for 4 weeks restored hippocampal synaptic density and improved cognitive function in hippocampal-dependent tasks. Mushroom and stubby spine profiles were increased by SPG302, and associated with enhanced expression of key postsynaptic proteins - including postsynaptic density protein 95 (PSD95), drebrin, and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) - and increased colocalization of PSD95 with synaptophysin. Notably, SPG302 proved efficacious in this model without modifying Aß and tau pathology. Thus, our study provides preclinical support for the idea that compounds capable of restoring synaptic density offer a viable strategy to reverse cognitive decline in AD.


Subject(s)
Alzheimer Disease , Cognition Disorders , Cognitive Dysfunction , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cognition , Cognition Disorders/pathology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Hippocampus/pathology , Humans , Mice , Mice, Transgenic , Synapses/metabolism , Synapses/pathology , tau Proteins/metabolism
11.
Front Neurosci ; 15: 752594, 2021.
Article in English | MEDLINE | ID: mdl-34803589

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by initial memory impairments that progress to dementia. In this sense, synaptic dysfunction and loss have been established as the pathological features that best correlate with the typical early cognitive decline in this disease. At the histopathological level, post mortem AD brains typically exhibit intraneuronal neurofibrillary tangles (NFTs) along with the accumulation of amyloid-beta (Abeta) peptides in the form of extracellular deposits. Specifically, the oligomeric soluble forms of Abeta are considered the most synaptotoxic species. In addition, neuritic plaques are Abeta deposits surrounded by activated microglia and astroglia cells together with abnormal swellings of neuronal processes named dystrophic neurites. These periplaque aberrant neurites are mostly presynaptic elements and represent the first pathological indicator of synaptic dysfunction. In terms of losing synaptic proteins, the hippocampus is one of the brain regions most affected in AD patients. In this work, we report an early decline in spatial memory, along with hippocampal synaptic changes, in an amyloidogenic APP/PS1 transgenic model. Quantitative electron microscopy revealed a spatial synaptotoxic pattern around neuritic plaques with significant loss of periplaque synaptic terminals, showing rising synapse loss close to the border, especially in larger plaques. Moreover, dystrophic presynapses were filled with autophagic vesicles in detriment of the presynaptic vesicular density, probably interfering with synaptic function at very early synaptopathological disease stages. Electron immunogold labeling showed that the periphery of amyloid plaques, and the associated dystrophic neurites, was enriched in Abeta oligomers supporting an extracellular location of the synaptotoxins. Finally, the incubation of primary neurons with soluble fractions derived from 6-month-old APP/PS1 hippocampus induced significant loss of synaptic proteins, but not neuronal death. Indeed, this preclinical transgenic model could serve to investigate therapies targeted at initial stages of synaptic dysfunction relevant to the prodromal and early AD.

12.
Bioresour Technol ; 341: 125755, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34419883

ABSTRACT

In this study, microalgae culture was integrated into wastewater treatment as tertiary treatment to recover nutrients such as nitrogen and phosphorous. Different wastewater dilutions were assessed to investigate the effect on microalgae biomass composition for further energy recovery in the form of biogas: photobioreactor (PBR)1: control; PBR2: 10% wastewater; PBR3 50% wastewater and PBR4: 100% wastewater. After 10 days of cultivation, PBR3 presented the highest biomass productivity, which was 47.37% higher than the control. All PBRs containing wastewater presented a 100% removal of phosphorous and up to 97.85% removal of ammonia nitrogen. Each microalgae biomass was harvested and dried for further biogas production, although no significant difference was observed, PBR4 presented a higher biogas accumulated production of 204.47 mL. These results suggest that it is suitable to integrate microalgae culture as a wastewater tertiary treatment as nutrients can be recovered in the form of biogas.


Subject(s)
Microalgae , Biofuels , Biomass , Nitrogen , Nutrients , Photobioreactors , Wastewater
13.
Nat Commun ; 12(1): 2421, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893290

ABSTRACT

The majority of Alzheimer's disease (AD) cases are late-onset and occur sporadically, however most mouse models of the disease harbor pathogenic mutations, rendering them better representations of familial autosomal-dominant forms of the disease. Here, we generated knock-in mice that express wildtype human Aß under control of the mouse App locus. Remarkably, changing 3 amino acids in the mouse Aß sequence to its wild-type human counterpart leads to age-dependent impairments in cognition and synaptic plasticity, brain volumetric changes, inflammatory alterations, the appearance of Periodic Acid-Schiff (PAS) granules and changes in gene expression. In addition, when exon 14 encoding the Aß sequence was flanked by loxP sites we show that Cre-mediated excision of exon 14 ablates hAß expression, rescues cognition and reduces the formation of PAS granules.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Brain/physiopathology , Disease Models, Animal , Mutation , Neuronal Plasticity/physiology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Female , Gene Expression Profiling/methods , Gene Ontology , Gene Regulatory Networks , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity/genetics
14.
Sci Rep ; 10(1): 8751, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472078

ABSTRACT

Dengue is the single most important human viral infection transmitted by insects. The function of the viral proteins andtheir interactions with the host cell is under exhaustive investigation with the aim of identifying antiviral strategies. Here,using recombinant full-length dengue virus genomes, carrying a fluorescent mCherry fused to capsid, we studied biophysicalproperties of the viral protein during one infectious cycle in living cells. Dengue virus capsid protein associates to differentcellular compartments but its function in these locations is largely unknown. We evaluated the diffusion of capsid inside the celland determined a higher effective diffusion coefficient in the cytoplasm than in the nucleus. Using advanced fluorescencecorrelation methods, including the recently developed two-dimensional pair correlation analysis, we constructed for the first timehigh resolution maps of capsid mobility in an infected cell. We observed that the motion of capsid in the nucleoplasm-nucleolusinterface was highly organized, indicating an obstacle in this interface. Although nucleoli are membraneless structures, theydisplayed liquid-liquid phase separation. Once inside nucleoli, the protein showed isotropic mobility, indicating free diffusion orimmobilized capsid inside these structures. This is the first study presenting spatial and temporal dynamics of the dengue viruscapsid protein during infection.


Subject(s)
Capsid Proteins/metabolism , Dengue Virus/physiology , Dengue/virology , Animals , Capsid Proteins/genetics , Cell Compartmentation , Cell Line , Computer Systems , Cricetinae , Diffusion , Fibroblasts , Genes, Reporter , Humans , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Mesocricetus , Microscopy, Confocal , Motion , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spectrometry, Fluorescence , Subcellular Fractions/chemistry , Time-Lapse Imaging , Red Fluorescent Protein
15.
Aging Cell ; 19(3): e13118, 2020 03.
Article in English | MEDLINE | ID: mdl-32087004

ABSTRACT

MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA-181a (miR-181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity-related proteins at synapses. We have previously demonstrated that miR-181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity-related proteins. Here, we further investigated the underlying mechanisms by which miR-181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity-dependent upregulation of the microRNA-regulating protein, translin, correlated with reduction of miR-181a upon chemical long-term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR-181a, and other plasticity-related proteins. Additionally, Aß treatment inhibited cLTP-dependent induction of translin and subsequent reduction of miR-181a, and cotreatment with miR-181a antagomir effectively reversed the effects elicited by Aß but did not rescue translin levels, suggesting that the activity-dependent upregulation of translin was upstream of miR-181a. In mice, a learning episode markedly decreased miR-181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR-181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg-AD model. Taken together, our results indicate that miR-181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aß disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Long-Term Potentiation/genetics , Memory Disorders/metabolism , MicroRNAs/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/pharmacology , Animals , Cells, Cultured , DNA-Binding Proteins/metabolism , Disease Models, Animal , Learning/drug effects , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Memory Disorders/genetics , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Neurons/metabolism , RNA-Binding Proteins/metabolism , Receptors, AMPA/metabolism , Signal Transduction/drug effects , Synapses/metabolism , Transfection , Up-Regulation
16.
Brain Pathol ; 30(2): 345-363, 2020 03.
Article in English | MEDLINE | ID: mdl-31491047

ABSTRACT

Neuronal loss is the best neuropathological substrate that correlates with cortical atrophy and dementia in Alzheimer's disease (AD). Defective GABAergic neuronal functions may lead to cortical network hyperactivity and aberrant neuronal oscillations and in consequence, generate a detrimental alteration in memory processes. In this study, using immunohistochemical and stereological approaches, we report that the two major and non-overlapping groups of inhibitory interneurons (SOM-cells and PV-cells) displayed distinct vulnerability in the perirhinal cortex of APP/PS1 mice and AD patients. SOM-positive neurons were notably sensitive and exhibited a dramatic decrease in the perirhinal cortex of 6-month-old transgenic mice (57% and 61% in areas 36 and 35, respectively) and, most importantly, in AD patients (91% in Braak V-VI cases). In addition, this interneuron degenerative process seems to occur in parallel, and closely related, with the progression of the amyloid pathology. However, the population expressing PV was unaffected in APP/PS1 mice while in AD brains suffered a pronounced and significant loss (69%). As a key component of cortico-hippocampal networks, the perirhinal cortex plays an important role in memory processes, especially in familiarity-based memory recognition. Therefore, disrupted functional connectivity of this cortical region, as a result of the early SOM and PV neurodegeneration, might contribute to the altered brain rhythms and cognitive failures observed in the initial clinical phase of AD patients. Finally, these findings highlight the failure of amyloidogenic AD models to fully recapitulate the selective neuronal degeneration occurring in humans.


Subject(s)
Alzheimer Disease/pathology , GABAergic Neurons/pathology , Interneurons/pathology , Perirhinal Cortex/pathology , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Middle Aged
17.
Sci Rep ; 9(1): 15936, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685865

ABSTRACT

Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is currently conceptualized as a disease of synaptic failure. Synaptic impairments are robust within the AD brain and better correlate with dementia severity when compared with other pathological features of the disease. Nevertheless, the series of events that promote synaptic failure still remain under debate, as potential triggers such as ß-amyloid (Aß) can vary in size, configuration and cellular location, challenging data interpretation in causation studies. Here we present data obtained using adeno-associated viral (AAV) constructs that drive the expression of oligomeric Aß either intra or extracellularly. We observed that expression of Aß in both cellular compartments affect learning and memory, reduce the number of synapses and the expression of synaptic-related proteins, and disrupt chemical long-term potentiation (cLTP). Together, these findings indicate that during the progression AD the early accumulation of Aß inside neurons is sufficient to promote morphological and functional cellular toxicity, a phenomenon that can be exacerbated by the buildup of Aß in the brain parenchyma. Moreover, our AAV constructs represent a valuable tool in the investigation of the pathological properties of Aß oligomers both in vivo and in vitro.


Subject(s)
Amyloid beta-Peptides/metabolism , Dependovirus/genetics , Hippocampus/metabolism , Memory/physiology , Neuronal Plasticity/physiology , Peptide Fragments/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Cells, Cultured , Gene Transfer Techniques , Genetic Vectors/genetics , Genetic Vectors/metabolism , Hippocampus/cytology , Maze Learning , Mice , Mice, Inbred C57BL , Peptide Fragments/genetics , Synapses/metabolism
18.
Proc Natl Acad Sci U S A ; 116(42): 21198-21206, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570577

ABSTRACT

Defects in interleukin-1ß (IL-1ß)-mediated cellular responses contribute to Alzheimer's disease (AD). To decipher the mechanism associated with its pathogenesis, we investigated the molecular events associated with the termination of IL-1ß inflammatory responses by focusing on the role played by the target of Myb1 (TOM1), a negative regulator of the interleukin-1ß receptor-1 (IL-1R1). We first show that TOM1 steady-state levels are reduced in human AD hippocampi and in the brain of an AD mouse model versus respective controls. Experimentally reducing TOM1 affected microglia activity, substantially increased amyloid-beta levels, and impaired cognition, whereas enhancing its levels was therapeutic. These data show that reparation of the TOM1-signaling pathway represents a therapeutic target for brain inflammatory disorders such as AD. A better understanding of the age-related changes in the immune system will allow us to craft therapies to limit detrimental aspects of inflammation, with the broader purpose of sharply reducing the number of people afflicted by AD.

19.
Curr Alzheimer Res ; 16(8): 675-698, 2019.
Article in English | MEDLINE | ID: mdl-31470787

ABSTRACT

Astrocytes are key cells for adequate brain formation and regulation of cerebral blood flow as well as for the maintenance of neuronal metabolism, neurotransmitter synthesis and exocytosis, and synaptic transmission. Many of these functions are intrinsically related to neurodegeneration, allowing refocusing on the role of astrocytes in physiological and neurodegenerative states. Indeed, emerging evidence in the field indicates that abnormalities in the astrocytic function are involved in the pathogenesis of multiple neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In the present review, we highlight the physiological role of astrocytes in the CNS, including their communication with other cells in the brain. Furthermore, we discuss exciting findings and novel experimental approaches that elucidate the role of astrocytes in multiple neurological disorders.


Subject(s)
Astrocytes/physiology , Animals , Astrocytes/pathology , Brain/pathology , Brain/physiology , Brain/physiopathology , Humans , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology
20.
Microsc Res Tech ; 82(11): 1835-1842, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31318476

ABSTRACT

The localization of surfaces inhomogeneities is central to many areas of technology, chemistry and biology, ranging from surface defects in industry to the identification and screening of early bio-defects inside cells. The development of methods that enable direct, sensitive, and rapid detection of those inhomogeneities is both relevant and timely. To address this challenge, we developed a far-field nanoimaging method to detect the presence of surface's nanodefects that modify the signal emitted by gold nanoparticles (AuNPs) under laser irradiation. Our technique is based on the formation of hot spots due to the confinement of light in the proximity of the AuNP, whose positions depend on the polarization direction of the incident beam. An inhomogeneity is detected as an increase in the intensity collected from the hot spots when a laser beam is orbiting the nanoparticle and the incident polarization direction of the laser beam is changed periodically.

SELECTION OF CITATIONS
SEARCH DETAIL
...