Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol Rep ; 5: 100116, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37753327

ABSTRACT

Recent work has identified pituitary adenylate cyclase activating polypeptide (PACAP) as a potential antimicrobial and immune stimulating agent which may be suitable for use in aquaculture. However, its effects on teleost immunity are not well studied and may be significantly different than what has been observed in mammals. In this study we examined the effects of PACAP on the Atlantic salmon macrophage cell line SHK-1. PACAP was able to increase the expression of LPS-induced il-1ß in at concentrations of 1 uM when administered 24h prior to LPS stimulation. Furthermore, concentrations as low as 40nM had an effect when administered both 24h prior and in tandem with LPS. PACAP was also capable of increasing the expression of il-1ß and tnf-α in SHK-1 cells challenged with a low dose of heat-killed Flavobacterium columnare. We attempted to get a better understanding of the mechanism underlying this enhancement of il-1ß expression by manipulating downstream signaling of PACAP with inhibitors of phosphodiesterase and phospholipase C activity. We found that inducing cAMP accumulation with phosphodiesterase inhibitors failed to recapitulate the effect of PACAP administration on LPS-mediated il-1ß expression by PACAP, while use of a phospholipase C inhibitor caused a PACAP-like enhancement in LPS-mediated il-1ß expression. Interestingly, the VPAC1 receptor inhibitor PG97-269, but not the PAC1 inhibitor max.d.4, also was capable of causing a PACAP-like enhancement in LPS-mediated il-1ß expression. This suggests that fish do not utilize the PACAP receptors in the same manner as mammals, but that it still exerts an immunostimulatory effect that make it a good immunostimulant for use in aquaculture.

2.
Fish Shellfish Immunol ; 119: 508-515, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34592474

ABSTRACT

Growth Hormone-Releasing Peptide 6 (GHRP-6) (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH2) is an agonist of the growth hormone secretagogue receptor. GHRP-6 mimics the effect of ghrelin. The present study focuses on the immunomodulatory effects of GHRP-6 in tilapia with and without the presence of Pseudomonas aeruginosa infection. GHRP-6 up-regulated the transcription levels of three piscidin-like antimicrobial peptides (Oreochromicins I, II, and III) and granzyme in a tissue-dependent manner. Antimicrobial activity stimulation in serum (lysozyme and anti-protease activity) was also confirmed. Besides, GHRP-6 enhanced the in vitro antimicrobial activity against P. aeruginosa in tilapia gills mucus and serum samples and decreased the bacterial load in vivo after infection with this Gram-negative bacterium. Our results evidenced, for the first time, a direct link between a growth hormone secretagogue ghrelin mimetic in fish and the enhancement of antimicrobial peptides transcription, which suggests that this secretagogue is capable to lead the activation of microbicidal activity in tilapia. Thus, these results open new possibilities for GHRP-6 application in aquaculture to stimulate the teleost immune system as an alternative treatment against opportunistic bacteria.


Subject(s)
Anti-Infective Agents , Cichlids , Tilapia , Animals , Antimicrobial Peptides , Ghrelin , Growth Hormone , Secretagogues
3.
AMB Express ; 9(1): 139, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31486941

ABSTRACT

Classical swine fever (CSF) is a contagious disease that causes a high mortality to domestic and wild pigs. Its causative agent is an enveloped Pestivirus named Classical Swine Fever Virus (CSFV). Due to the huge economic affectations produced by this disease to porcine industry, several vaccines have been developed using principally the CSFV E2 glycoprotein. Recently, a subunit vaccine based on this structural protein of the CSFV fused to the porcine CD154 molecule as immunomodulator named E2-CD154 was assayed by us. This chimeric protein was produced in the Human Embryonic Kidney (HEK-293) cell line. In this work, the growth and the expression profiles of HEK-293 E2-CD154 cells in four commercially available culture media were studied. The oligosaccharide structures in the N-glycosylation patterns of the E2-CD154 protein produced by this cell line in 10 L fermenters with two different culture media were also analyzed. In addition, the neutralizing antibody response generated in mice vaccinated with these antigens was assayed. Our results suggest that the culture media CDM4HEK293 and SFM4HEK293 which are recommended for HEK-293 growth are the best choice to growth the cell clone expressing the E2-CD154 protein. The glycosylation pattern and the neutralizing antibody response generated by the E2-CD154 protein were independent of the culture medium used which demonstrates the high reproducibility and consistency among protein batches produced by HEK-293 cells even in different culture conditions.

4.
Front Immunol ; 10: 926, 2019.
Article in English | MEDLINE | ID: mdl-31105711

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed in mammals and is capable of performing roles as a neurotransmitter, neuromodulator, and vasodilator. This polypeptide belongs to the glucagon/secretin superfamily, of which some members have been shown to act as antimicrobial peptides in both mammalian and aquatic organisms. In teleosts, PACAP has been demonstrated to have direct antimicrobial activity against several aquatic pathogens, yet this phenomenon has never been studied throughout a live bacterial challenge. The present study focuses on the influence of synthetic Clarias gariepinus 38 amino acid PACAP on the rainbow trout monocyte/macrophage-like cell line, RTS11, when exposed to the coldwater bacterial pathogen Flavobacterium psychrophilum. PACAP was shown to have direct antimicrobial activity on F. psychrophilum when grown in both cytophaga broth and cell culture media (L-15). Further, the ability of teleostean PACAP to permeabilize the membrane of an aquatic pathogen, F. psychrophilum, was demonstrated for the first time. The viability of RTS11 when exposed to PACAP was also observed using a trypan blue exclusion assay to determine optimal experimental doses of the antimicrobial peptide. This displayed that only concentrations higher than 0.1 µM negatively impacted RTS11 survival. Interestingly, when RTS11 was pre-treated with PACAP for 24 h before experiencing infection with live F. psychrophilum, growth of the pathogen was severely inhibited in a dose-dependent manner when compared to cells receiving no pre-treatment with the polypeptide. Relative expression of pro-inflammatory cytokines (IL-1ß, TNFα, and IL-6) and PACAP receptors (VPAC1 and PAC1) was also analyzed in RTS11 following PACAP exposure alone and in conjunction with live F. psychrophilum challenge. These qRT-PCR findings revealed that PACAP may have a synergistic effect on RTS11 immune function. The results of this study provide evidence that PACAP has immunostimulatory activity on rainbow trout immune cells as well as antimicrobial activity against aquatic bacterial pathogens such as F. psychrophilum. As there are numerous pathogens that plague the aquaculture industry, PACAP may stimulate the teleost immune system while also providing an efficacious alternative to antibiotic use.


Subject(s)
Cell Membrane Permeability/immunology , Fish Diseases/immunology , Flavobacterium/immunology , Macrophages/immunology , Oncorhynchus mykiss/immunology , Pituitary Adenylate Cyclase-Activating Polypeptide/immunology , Animals , Aquaculture/methods , Cell Line
5.
Biochem Biophys Rep ; 5: 379-387, 2016 Mar.
Article in English | MEDLINE | ID: mdl-28955845

ABSTRACT

BACKGROUND: Growth hormone secretagogues (GHS), among other factors, regulate the release of GH. The biological activity of the secretagogue peptide A233 as a promoter of growth and innate immunity in teleost fish has previously been demonstrated, but its role in the immune system of mammals is not well understood. METHODS: The effect of the peptide was investigated in J774A.2 macrophage cells using a comparative proteomics approach after 6 and 12 h of peptide stimulation. RESULTS: The functional analysis of differentially modulated proteins showed that A233 peptide treatment appears to promote activation and ROS-dependent cytotoxic functions in macrophages and enhanced expression of antiviral protein complexes such as MAVS. In accordance with this hypothesis, we found that A233 treatment enhanced superoxide anion production and the IFN-γ level in J774A.2 cells and mouse splenocytes, respectively, and reduced viral load in a dengue virus mouse model of infection. CONCLUSIONS: The growth hormone secretagogue A233 peptide promotes activation of ROS-dependent cytotoxic functions and exerts immunomodulatory effects that enable an antiviral state in a dengue virus mouse model. GENERAL SIGNIFICANCE: The increase of IFN-γ level and the differential modulation of antiviral proteins by the A233 peptide suggest that the molecule could activate an innate immune response with a possible further impact in the treatment of acute and chronic diseases.

6.
Vaccine ; 32(2): 223-9, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24252704

ABSTRACT

Modern vaccines based on purified recombinant antigens have improved their safety; however they induce a suboptimal immune response without the help of adjuvants. Consequently, the development of new adjuvants to enhance the immunogenicity of purified subunit antigens and modulate resulting immune responses is of great interest. In the present study, we evaluated the ability of antimicrobial peptides Oreochromicins previously isolated from tilapia Oreochromis niloticus to enhance adaptive immune responses in mice and tilapia. When co-administrated with ovalbumin in mice, Oreochromicin-1 induced a TH1 humoral immune response. Oreochromicin-2 and 3 induce a TH1 cellular immune response characterized by the induction of interferon-γ in a dose depend manner. Additionally, co-administration of Oreochromicin-1 with the sea lice my32 from Lepeophtheirus salmonis antigen (my32-Ls) increases the humoral immune response in mice and tilapia. We also tested different combinations of these Oreochromicins with the sea lice antigen my32-Ls in mice. Humoral and cellular TH1 responses were enhanced by co-administration of my32-Ls/Oreochromicin-3 and the combination my32-Ls/Oreochromicin-2/3. In agreement with these results, Oreochromicin-1 and 3 enhanced in vitro TH1 cytokine IFN-γ production in Concanavalin A primed splenocytes from naïve mice after a 48h incubation period. In summary, the results showed that tilapia alpha-helical antimicrobial peptides Oreochromicins are able to boost immune response in mammals and fish, encouraging their use as TH1 molecular adjuvants to subunit antigens.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens/administration & dosage , Antimicrobial Cationic Peptides/administration & dosage , Cichlids/immunology , Th1 Cells/immunology , Vaccines/immunology , Adaptive Immunity , Adjuvants, Immunologic/pharmacology , Animals , Antigens/immunology , Antimicrobial Cationic Peptides/pharmacology , Cells, Cultured , Copepoda , Female , Immunity, Cellular , Immunity, Humoral , Interferon-gamma/immunology , Male , Mice , Mice, Inbred BALB C , Spleen/cytology , Spleen/immunology
7.
PLoS One ; 8(2): e56417, 2013.
Article in English | MEDLINE | ID: mdl-23460801

ABSTRACT

Recombinant virus-like particles (VLP) antigenically similar to rabbit hemorrhagic disease virus (RHDV) were recently expressed at high levels inside Pichia pastoris cells. Based on the potential of RHDV VLP as platform for diverse vaccination purposes we undertook the design, development and scale-up of a production process. Conformational and stability issues were addressed to improve process control and optimization. Analyses on the structure, morphology and antigenicity of these multimers were carried out at different pH values during cell disruption and purification by size-exclusion chromatography. Process steps and environmental stresses in which aggregation or conformational instability can be detected were included. These analyses revealed higher stability and recoveries of properly assembled high-purity capsids at acidic and neutral pH in phosphate buffer. The use of stabilizers during long-term storage in solution showed that sucrose, sorbitol, trehalose and glycerol acted as useful aggregation-reducing agents. The VLP emulsified in an oil-based adjuvant were subjected to accelerated thermal stress treatments. None to slight variations were detected in the stability of formulations and in the structure of recovered capsids. A comprehensive analysis on scale-up strategies was accomplished and a nine steps large-scale production process was established. VLP produced after chromatographic separation protected rabbits against a lethal challenge. The minimum protective dose was identified. Stabilized particles were ultimately assayed as carriers of a foreign viral epitope from another pathogen affecting a larger animal species. For that purpose, a linear protective B-cell epitope from Classical Swine Fever Virus (CSFV) E2 envelope protein was chemically coupled to RHDV VLP. Conjugates were able to present the E2 peptide fragment for immune recognition and significantly enhanced the peptide-specific antibody response in vaccinated pigs. Overall these results allowed establishing improved conditions regarding conformational stability and recovery of these multimers for their production at large-scale and potential use on different animal species or humans.


Subject(s)
Caliciviridae Infections/prevention & control , Hemorrhagic Disease Virus, Rabbit/immunology , Molecular Conformation , Pichia/metabolism , Temperature , Viral Vaccines/biosynthesis , Virion/immunology , Amino Acid Sequence , Animals , Buffers , Caliciviridae Infections/immunology , Chromatography, Gel , Classical Swine Fever/immunology , Classical Swine Fever/prevention & control , Classical Swine Fever Virus/immunology , Heat-Shock Response , Hemagglutination , Hydrogen-Ion Concentration , Immunization , Molecular Sequence Data , Osmolar Concentration , Peptides/chemistry , Peptides/immunology , Rabbits , Sepharose , Swine , Virion/ultrastructure , Viscosity
8.
J Endocrinol ; 214(3): 409-19, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22707376

ABSTRACT

In teleosts fish, secretion of GH is regulated by several hypothalamic factors that are influenced by the physiological state of the animal. There is an interaction between immune and endocrine systems through hormones and cytokines. GH in fish is involved in many physiological processes that are not overtly growth related, such as saltwater osmoregulation, antifreeze synthesis, and the regulation of sexual maturation and immune functions. This study was conducted to characterize a decapeptide compound A233 (GKFDLSPEHQ) designed by molecular modeling to evaluate its function as a GH secretagogue (GHS). In pituitary cell culture, the peptide A233 induces GH secretion and it is also able to increase superoxide production in tilapia head-kidney leukocyte cultures. This effect is blocked by preincubation with the GHS receptor antagonist [d-Lys(3)]-GHRP6. Immunoneutralization of GH by addition of anti-tilapia GH monoclonal antibody blocked the stimulatory effect of A233 on superoxide production. These experiments propose a GH-mediated mechanism for the action of A233. The in vivo biological action of the decapeptide was also demonstrated for growth stimulation in goldfish and tilapia larvae (P<0.001). Superoxide dismutase levels, antiprotease activity, and lectin titer were enhanced in tilapia larvae treated with this novel molecule. The decapeptide A233 designed by molecular modeling is able to function as a GHS in teleosts and enhance parameters of the innate immune system in the fish larvae.


Subject(s)
Goldfish/growth & development , Growth Hormone/metabolism , Immunity, Innate/drug effects , Oligopeptides/pharmacology , Tilapia/growth & development , Animals , Aquaculture/methods , Biological Assay , Cells, Cultured , Goldfish/immunology , Immunity, Innate/immunology , Models, Molecular , Oligopeptides/chemical synthesis , Oligopeptides/metabolism , Peptide Hormones/pharmacology , Pituitary Gland/cytology , Superoxide Dismutase/metabolism , Superoxides/metabolism , Tilapia/immunology
9.
J Biotechnol ; 151(2): 175-9, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-21112358

ABSTRACT

The importance of somatotropin as a growth promoting agent and immune-stimulator has long been recognized and its potential application in the fish farming industry has been an active research area. In the work reported here, we sought to improve the stability of a previously obtained truncated somatotropin by applying a 60 °C heat shock to the culture supernatant containing this molecule, and then compared its effects with and without heat shock on larval growth and immune functions. We observed that the treatment with heat shock at 60 °C enhanced protein stability, growth and innate immune functions in tilapia larvae.


Subject(s)
Growth Hormone/physiology , Pichia/metabolism , Animals , Blotting, Western , Culture Media/metabolism , Growth Hormone/chemistry , Growth Hormone/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Response , Hot Temperature , Lectins , Reactive Oxygen Species , Temperature , Tilapia , Time Factors
10.
BMC Vet Res ; 6: 43, 2010 Sep 16.
Article in English | MEDLINE | ID: mdl-20846415

ABSTRACT

BACKGROUND: The cattle tick, Rhipicephalus (Boophilus) microplus, affects livestock production in many regions of the world. Up to now, the widespread use of chemical acaricides has led to the selection of acaricide-resistant ticks and to environmental contamination. Gavacplus is a subunit vaccine based on the recombinant Bm86 tick antigen expressed in yeast, capable to control infestations of R. microplus under controlled and production conditions. The vaccine constitutes the core element of broad control programs against this ectoparasite, in which acquired immunity in cattle to Bm86 is combined with a rational use of acaricides. At present, the conventional vaccine scheme consists of three doses that should be administered at weeks 0, 4 and 7, followed by a booster every six months. RESULTS: In this study we assayed a reduction in the number of the initial doses of Gavacplus, evaluated the time course and the level of bovine anti-Bm86 antibodies elicited, and analyzed the vaccine effect on ticks engorging on immunized cattle under production conditions. Following three different immunization schemes, the bovines developed a strong and specific immune response characterized by elevated anti-Bm86 IgG titers. A reduction in the weight of engorging female ticks, in the weight of the eggs laid and also in R. microplus viable eggs percentage was obtained by using only two doses of Gavacplus administered at weeks 0 and 4, followed by a booster six months later. This reduction did not differ from the results obtained on ticks engorging on cattle immunized at weeks 0, 4 and 7. It was also demonstrated that anti-Bm86 antibody titers over 1:640, measured in bovines immunized at weeks 0 and 4, were sufficient to affect weight and reproductive potential of female ticks as compared with ticks engorging on unvaccinated animals. In addition, no statistically significant differences were detected in the average weight of eggs laid by ticks engorged on immunized cattle that showed anti-Bm86 specific titers in the range of 1:640 to 1:81920. CONCLUSION: The administration of two initial doses of Gavacplus containing 100 µg of Bm86 antigen to non-immunized cattle under production conditions is sufficient to affect the weight and the reproductive capacity of R. microplus engorging females. According to these results, cattle herds' manipulation and vaccine costs could be potentially reduced with a positive impact on the implementation of integrated control programs against R. microplus.


Subject(s)
Cattle Diseases/parasitology , Immunization/veterinary , Membrane Glycoproteins/immunology , Recombinant Proteins/immunology , Rhipicephalus/immunology , Tick Infestations/veterinary , Vaccines/immunology , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/prevention & control , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Immunization/methods , Immunization/standards , Immunoglobulin G/blood , Membrane Glycoproteins/genetics , Random Allocation , Recombinant Proteins/genetics , Rhipicephalus/growth & development , Statistics, Nonparametric , Tick Infestations/immunology , Tick Infestations/parasitology , Tick Infestations/prevention & control , Vaccines/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
11.
Comp Biochem Physiol B Biochem Mol Biol ; 156(4): 264-72, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20382254

ABSTRACT

In a previous study, we unexpectedly found that tilapia growth hormone (tiGH) secreted to the culture media by transformed cells of the yeast Pichia pastoris lacks 46 amino acids from the C-terminal end. In the present study, we cloned the exact fragment that code for this truncated variant and demonstrated its growth promoting activity in goldfish when it's administered by immersion bath. Furthermore, a better characterization of this polypeptide was performed. Administration of the polypeptide derived from tiGH increased superoxide anion production and has a mitogenic effect on peripheral blood leukocytes. This molecule binds to liver membranes proteins in vitro in a saturable manner. Beside, we cloned and expressed tiGH and its truncated variant in mammalian cells using the signal peptide of this hormone and we observed that the secretion was drastically reduced in the truncated tiGH as compared to the intact molecule. Truncated tilapia growth hormone lacking the helix 4 and two disulfide loops is still a bioactive hormone, suggesting that the disulfide bonds and the helix 4 are not essential for the biological activities examined in this work. However, the growth hormone C-terminal portion seems to be essential for this hormone to be secreted by cultured cells in vitro.


Subject(s)
Growth Hormone/metabolism , Growth Hormone/pharmacology , Peptides/metabolism , Peptides/pharmacology , Tilapia , Animals , Cell Line , Cell Proliferation/drug effects , Escherichia coli/metabolism , Goldfish/growth & development , Growth Hormone/chemistry , Humans , Inclusion Bodies/metabolism , Larva/growth & development , Leukocytes/drug effects , Leukocytes/metabolism , Liver/metabolism , Peptides/isolation & purification , Superoxides/metabolism
12.
Gen Comp Endocrinol ; 157(1): 49-57, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18471813

ABSTRACT

Pichia pastoris cells transformed with a plasmid engineered for the expression of tilapia growth hormone as a secreted product produced a proteolytically cleaved form of the recombinant protein. The sequence of this truncated variant was obtained by mass spectrometry analysis. The cleavage site was determined to be between residues Tyr 158 and Tyr 159. The resulting truncated tilapia growth hormone was a single chain protein lacking 46 amino acids of the C-terminal portion. In this study, we showed that the truncated growth hormone produced in the P. pastoris culture supernatant has growth promoting effects and stimulates innate immune parameters (lysozyme and lectins) in tilapia larvae. These results suggest that the C-terminal portion of growth hormone is not required for its growth promoting activity and the innate immune functions studied herein in fish. In addition, we found that the culture supernatant containing truncated tilapia growth hormone has a stronger effect over growth and immune system than cells lysate containing intact tilapia growth hormone expressed in P. pastoris.


Subject(s)
Fish Proteins/pharmacology , Growth Hormone/pharmacology , Immunity, Innate/drug effects , Tilapia/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Body Weight/drug effects , Electrophoresis, Polyacrylamide Gel , Fish Proteins/genetics , Fish Proteins/metabolism , Growth Hormone/chemistry , Growth Hormone/metabolism , Hemagglutinins/metabolism , Molecular Sequence Data , Muramidase/metabolism , Pichia/genetics , Sequence Homology, Amino Acid , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Tilapia/genetics , Tilapia/immunology
13.
FEBS J ; 273(24): 5669-77, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17212782

ABSTRACT

The crustacean hyperglycemic hormone (CHH) plays an important role in the regulation of hemolymph glucose levels, but it is also involved in other functions such as growth, molting and reproduction. In the present study we describe the first CHH family gene isolated from the Atlantic Ocean shrimp Litopenaeus schmitti. Sequence analysis of the amplified cDNA fragment revealed a high nucleotide sequence identity with other CHHs. Northern blot analysis showed that the isolated CHH mRNA from L. schmitti is present in the eyestalk but not in muscle or stomach. We also investigated the ability of dsRNA to inhibit the CHH function in shrimps in vivo. Injection of CHH dsRNA into the abdominal hemolymph sinuses resulted in undetectable CHH mRNA levels within 24 h and a corresponding decrease in hemolymph glucose levels, suggesting that functional gene silencing had occurred. These findings are the first evidence that dsRNA technique is operative in adult shrimps in vivo.


Subject(s)
Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Penaeidae/genetics , RNA Interference , RNA, Double-Stranded/pharmacology , Animals , Arthropod Proteins , Base Sequence , Cloning, Molecular , DNA, Complementary/biosynthesis , Gene Expression Regulation , Invertebrate Hormones , Molecular Sequence Data , Nerve Tissue Proteins/biosynthesis , Organ Specificity/genetics , Penaeidae/drug effects , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...